
www.manaraa.com

ABSTRACT OF THESIS

Eliminating SQL Injection and Cross-Site Scripting With Aspect

Oriented Programming

Cross Site scripting (XSS) and SQL injection are two of the most common vulnerabilities

found in applications. According to a study done by the Web Application Security

Consortium (WASC) on 12,186 web applications, the percentage of sites with these

vulnerabilities is 38 and 13 percent, respectively [3]. The fundamental reason these

vulnerabilities exist in web applications are critical design flaws which lead to security

issues across entire projects. It is typical in the case of web applications that developers

continue to write insecure code and only fix these issues when they are noticed or

become a problem [4]. Using Aspect Oriented Programming (AOP), modules can be

created to address these security vulnerabilities across an entire application without

modifying existing source code. This paper will explain in detail how the use of AOP and

AspectJ in particular can be leveraged to create a tool for eliminating these two major

security vulnerabilities in open source Java web applications. The implications of a tool

for successfully eliminating these vulnerabilities would lead to a significant improvement

in web application security by uncovering fundamental design flaws, providing sanity

checks for programmers and architects, and make applications compliant with PCI DSS

Standard with respect to XSS and SQL Injection.

www.manaraa.com

www.manaraa.com

Eliminating SQL Injection and Cross-Site Scripting With Aspect

Oriented Programming

by

Bojan Simic

James Walden, PH.D., Committee Chair

Wei Hao, Ph.D. Committee Member

Frank Braun, Ph.D. Committee Member

Yi Hu, Ph.D. Committee Member

Northern Kentucky University

May 2012

www.manaraa.com

www.manaraa.com

Eliminating SQL Injection and Cross-Site Scripting With Aspect

Oriented Programming

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Computer Science

at Northern Kentucky University

By

Bojan Simic
Highland Heights, Kentucky

Director: Dr. Maureen Doyle
Associate Professor of Computer Science

Highland Heights, Kentucky

2012

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1513095

Copyright 2012 by ProQuest LLC.

UMI Number: 1513095

www.manaraa.com

Copyright © By

Bojan Simic

2012

www.manaraa.com

i

ACKNOWLEDGEMENTS

Fortify Source Code Analyzer is a product owned and licensed by HP.

Java is a registered trademark licensed by Oracle.

AspectJ is a registered trademark of the Eclipse Foundation.

The OWASP Enterprise Security API (ESAPI) is licensed by OWASP.

www.manaraa.com

ii

TABLE OF CONTENTS

Chapter 1 Introduction .. 1

1.1 Introduction .. 1

1.2 Motivation .. 2

1.4 Background Research and Related Work .. 5

1.4.1 Security and the Aspect-Oriented Programming Paradigm ... 5

1.4.2 Aspect-Oriented Programming and SQL Injection.. 7

1.4.3 Aspect-Oriented Programming and XSS ... 9

1.4.4 Static analysis tools and the Fortify SCA... 11

1.5 Thesis Statement .. 11

Chapter 2 Approach ... 13

2.1 Choosing the AOP Library ... 13

2.3 Approaches for Static Code Analysis ... 16

2.4 Mitigation Technique Selection ... 17

2.5 SQL Injection Mitigation Approach .. 18

2.6 XSS Mitigation Approach ... 21

2.7 Determining Success Criteria .. 24

2.7.1 Success Criteria for SQL Injection ... 24

2.7.2 Success Criteria for XSS .. 25

2.7.3 Success Criteria for Performance .. 25

Chapter 3 Implementation .. 27

3.1 Identifying Case Studies and Static Analysis ... 27

3.1.1 Criteria for Applications to Analyze .. 27

3.1.2 Identifying Applications for Case Studies .. 29

3.1.3 Using the Fortify SCA .. 32

3.1.4 Using the Fortify Audit Workbench .. 34

3.2 Fortify SCA Result Analysis ... 36

3.2.1 Parsing the XSS and SQL Injection Issues ... 37

3.2.2 Identifying Pointcuts .. 41

3.2.3 Pointcut Template Creation .. 45

3.2.4 Advice Template Creation .. 47

www.manaraa.com

iii

3.2.5 Aspect Logging .. 53

3.2.6 Generating the Aspects .. 54

3.3 Algorithms for Vulnerability Mitigation .. 61

3.3.1 SQL Injection and ESAPI .. 62

3.3.2 SQL Injection and Tautology Detection ... 68

3.3.3 XSS Mitigation Algorithms .. 70

3.3.4 SQL Injection Prevention JUnit Testing ... 73

3.4 Aspect Generation and Deployment ... 76

3.4.1 Using the Aspect Generator ... 76

3.4.2 Deploying Generated Aspects .. 78

3.5 Implementation Summary .. 79

Chapter 4 Evaluation .. 80

4.1 Methods ... 80

4.2 Results ... 82

4.3 Evaluation Conclusion.. 89

Chapter 5 Conclusion and Future Works ... 90

5.1 Concluding Summary ... 90

5.2 Future Works .. 92

Appendices .. 95

Appendix A SQL Injection Functions Definition XML ... 95

Appendix B XSS Functions Definition XML .. 96

Appendix C XSS Aspect Generated ... 97

Appendix D SQL Injection Aspect Generated .. 103

Appendix E XSS Validator Class ... 110

Appendix F SQL Injection Validator Class .. 111

References .. 116

www.manaraa.com

iv

TABLE OF FIGURES

Figure 1 - AJDT Plugin Interface Example ... 14

Figure 2 - Vulnerability Description from Fortify Report .. 17

Figure 3 - SQL Injection Aspect Creator .. 20

Figure 4 - Creation of the XSS Mitigation Aspect .. 23

Figure 5 - Alfresco Architecture .. 30

Figure 6 - OfBiz Architecture ... 31

Figure 7 - Checking out Case Study Projects ... 33

Figure 8 - Executing the Fortify SCA .. 33

Figure 9 - Apache OfBiz Report Results .. 35

Figure 10 - JadaSite Report Results ... 36

Figure 11 - Alfresco Report Results ... 36

Figure 12 - Anatomy of Issue from SCA Result ... 39

Figure 13 - Class Diagram DataFileParser and Issue ... 40

Figure 14 - How SAX Parser Works [46] .. 41

Figure 15 - SQL Injection Pointcut Functions .. 43

Figure 16 - XSS Pointcut Functions ... 44

Figure 17 - Function Object and FunctionsParser Class Diagrams ... 45

Figure 18 - Anatomy of an AspectJ Pointcut ... 47

Figure 19 - XSS Pointcut Template .. 47

Figure 20 - SQL Injection Pointcut Template .. 47

Figure 21 - Anatomy of Around Advice for AspectJ .. 48

Figure 22 - SQL Injection Aspect Advice Template ... 49

Figure 23 - XSS Aspect Advice Template ... 53

Figure 24 - Log4j properties for the XSS and SQL Injection aspects ... 54

Figure 25 - Aspect Generator and Aspect Bean Class Diagrams ... 55

Figure 26 – SQL Injection Aspect Template .. 58

Figure 27 - Cross-Site Scripting Aspect Template ... 59

Figure 28 - generateAspect method from XSSAspectGenerator class ... 60

Figure 29 - generateAspect method from SQLInjectionAspectGenerator 60

Figure 30 - SQLInjectionAspectGenerator and XSSAspectGenerator Class Diagrams 61

Figure 31 - SQL Injection Validator Execution Flow .. 63

Figure 32 - ThesisUtil Diagram and getSolution method logic ... 64

Figure 33 - How JavaCC Parses a query [50] ... 65

Figure 34 - SQL Parser flow diagram ... 66

Figure 35 - Encoding Algorithm for Oracle SQL Encoding .. 67

Figure 36 - testTautology Method Implementation in SQL Injection Validator 69

Figure 37 - Tautology replacement logic .. 70

www.manaraa.com

v

Figure 38 - Example of login bypass SQL Injection Attack .. 70

Figure 39 - XSS Validator Execution Flow ... 71

Figure 40 - JUnit Test Method for encodeMySQL... 74

Figure 41 - JUnit test for XSS Validator escapeCustomString method ... 75

Figure 42 - Asking user to provide XSS Fix type .. 77

Figure 43 - Asking user to provide SQLI fix type ... 77

Figure 44 - AspectJ Compiler Execution [55] .. 78

Figure 45 - Potentially Malicious Queries in Data File .. 81

Figure 46 - Potential XSS attacks from XSS test data file. ... 82

Figure 47 - List of queries tested for SQLI Validator ... 83

Figure 48 - Example of XSS Aspect fix map ... 87

www.manaraa.com

1

Chapter 1 Introduction

1.1 Introduction

Insecurity is a fact in today’s Internet. The most private information such as credit

card numbers, social security numbers, and personally identifiable information (PII) is

transferred across the Internet on a regular basis. The statistics on Internet security tell

us that one in three computers fall victim to viruses [1]; 71% of Education, 58% of Social

Networking, and 51% of Retail websites are exposed to a serious vulnerability every

day [2], and that 64% of websites have at least one information leakage vulnerability [2].

As the Internet evolves, the variety of attacks evolves with it, and Internet security

becomes a moving target that is becoming more difficult to hit.

Lack of Internet security cannot be attributed to any one particular factor. Instead,

it is a very complicated and expensive task that often requires considerable effort and

knowledge. In order to have a secure web application, there needs to be a rigid

security-oriented architectural design, routine maintenance, code reviews, and

extensive penetration testing. Unfortunately, software security is often seen as an

afterthought in the software architecture design and this often leads to the majority of

vulnerabilities. Many businesses are simply not willing to pay the overhead costs

associated with operating a secure application. This often leads to putting an essentially

ineffective patch on an architecturally insecure product in order to have some form of

“security”. These are the kind of solutions that result in the unsatisfactory statistics

above.

Implementing software security is a very important but complicated task for any

development team. When architecting a piece of software it is imperative that the

method chosen for implementing security is simple, effective, robust, modular, and

scalable in order for the solution to be maintainable. This paper will discuss a

programming paradigm with all these values and how it can be implemented in new and

existing web applications to mitigate some of the most common vulnerabilities in Java

web applications.

www.manaraa.com

2

In the remainder of this chapter, we will discuss the motivation for the writing of this

thesis, the background research that was done in preparation, and how the remainder

of the paper is laid out.

1.2 Motivation

According to White Hat Security, “The average website has 230 vulnerabilities

that are in the HIGH, CRITICAL, or URGENT state according to the Payment Card

Industry Data Security Standard (PCI-DSS) for software security”. [2] This statement

serves as the one of the primary motivations for this thesis. When looking at the state of

Internet security, it is important to remember that not all vulnerabilities are created

equal. For example, Cross-site Scripting (XSS) and SQL Injections (SQLI) are often the

vulnerabilities with higher priority because of the potential repercussions that could arise

if they are exploited. When looking at the statistics, 64% of websites have XSS

vulnerabilities compared to 14% that have SQL Injection bugs [2]. Although the

percentage of applications with SQL Injection issues is lower, a vulnerability of this type

can potentially lead to an entire database worth of stolen or lost information [4]. The

prioritization of vulnerabilities across multiple industries such as financial, retail, and

telecommunications is what motivated the writing of this paper to focus on SQL Injection

and Cross-site Scripting in particular.

Another major motivating factor is the current state of software security

programming practices. When a software developer researches software security best

practices, they are often given instruction to do things such as input validation,

sanitizing data, avoid using dynamic SQL, etc… While all of this information is relevant

and helpful, often times there are no ways to enforce these best practices in a real world

software development environment where the programmer has pressures from strict

deadlines. The motivating question here is “what is a time and cost effective way for a

development team to create a secure product?” The key to this is simplicity because the

simplest, most unobtrusive approach must be taken in order to realistically create a

secure product. This is the motivation for using the Aspect Oriented Programming

www.manaraa.com

3

(AOP). This paradigm allows the developer to use a modular approach that is able to

cut across multiple concerns in order to implement security. This avoids the often

scattered and tangled security code to be in a single module that is applied to any part

of the software where needed.

The third major motivating factor for this thesis is the need to reduce time and

cost to implement security into legacy web applications. Although it is always preferred

to implement security at every stage of the development process, when an application is

already deployed or security was not an absolute necessity in the first place, there

needs to be a time and cost effective way of implementing it. We typically try to avoid

the “penetrate and patch” approach to security but the simple fact of the matter is that

flaws are usually discovered in the production environment. When dealing with this

scenario, AOP is an obvious choice to implement security because the developers do

not have to make changes to existing source code. Instead, they can use AOP’s joint-

point model to secure existing source code and even compiled third party libraries that

may need security patches.

1.3 AOP and the AspectJ Implementation

AOP is the programming paradigm used to implement separation of concerns in

software. It uses the concepts of both procedural and object-oriented programming

(OOP) used for decades to increase modularity by allowing all concerns that affect

multiple parts of the application to be centralized. AOP provides the structure for

applying cross-cutting concerns across complex software projects in the way that OOP

provides features such as inheritance. This concept provides easier maintenance,

readability, and reusability of code because it is in a centralized place. The individual,

modularized portion of code that does cross-cutting is called an aspect.

AspectJ is the extension of the Java programming language that implements

aspect-oriented programming. This extension allows for definition of code to execute at

pre-defined points at program execution time. These join points are the defined points of

the program’s execution that are grouped as pointcuts that also refer to values at

individual join points. The concept of an advice allows for definition of additional code to

www.manaraa.com

4

be executed before, after, or around the join point to add to its behavior. The totality of

the aspect consists of one or more pointcuts, an optional constructor, member

declarations, and an advice for each pointcut.

The Joint Point Model is the critical piece of the AOP mechanism. Each join point

acts as a reference to a part of a complex program that can be acted on. Each pointcut

that evaluates to a potential collection of joint points is defined by several methods:

• Method or constructor call – can intercept the method or constructor in any

object defined.

• Method or constructor execution – when the method or constructor in an

object is invoked.

• Accessors or mutators – can intercept the setting or getting of a field in a

class, object, or interface.

• Execution of exception handlers.

• Class or object initialization.

The pointcuts can be defined using pointcut designators that reference parts of code

such as class names, method names, method signatures, method return types as well

as wild card characters to get the desired resulting join points.

 The Advice portion of the aspect is a piece of code similar to a method that will

be executed at each of the join points identified by the corresponding pointcut. AspectJ

supports three types of advice: before, after, and around. If the advice is of type before

or after, the code declared will be executed either before the join point or after it is

finished executing. This is typically used to log certain events or to do any necessary

pre or post processing of data for a particular module. The around advice is used to

intercept the normal execution of the join point. The advice allows for actions such as

validation of input or output of the join point as well as catching of any exceptions that

may occur.

 The AspectJ model of behavior defines the hierarchy in the aspect for each

advice. The around advice is executed first in order of most-specific first, then the

before advice, and finally the after advice (least specific first). This hierarchy allows for

www.manaraa.com

5

error free execution of cross-cutting concerns even in the event that multiple aspects

advice upon the same join point. The aspect definition is similar to that of a regular Java

class and can have its own constructor (with no parameters) and attributes. The

AspectJ Compiler (AJC) is used to do aspect weaving that ensures the execution of

every advice at individual join points. Each piece of the program source code is

compiled as normal when there is no join point identified and static points that represent

the advice logic are inserted wherever join points are defined.

The AspectJ implementation of AOP is the top rated extension for the Java

programming language. The extension provides the benefit of more modular and

concise code; a structured framework for implementing cross-cutting concerns;

programming tools and extensions for programming environments; and code readability

because logic that is typically boilerplate code can be extracted into individual modules.

Therefore the goal of this thesis is to leverage this extension to apply it to eliminating

SQL Injection and XSS vulnerabilities in Java web applications.

1.4 Background Research and Related Work

1.4.1 Security and the Aspect-Oriented Programming Paradigm

There are many ways that people are approaching web application security but

the only thing for certain is that there is no silver bullet solution to the problem.

However, since the best solution is usually the simplest one, the AOP paradigm tends to

be a more suitable candidate to at least mitigate the security problem in web

applications. By applying security with AOP and the joint-point model, the development

team has the option to modularize their security code and have it apply across several

concerns such as the web application server and the database layer of the application.

This is the main reason to use AOP for security since there is usually very little reason

to include security based logic into the core business logic of the application. The

development lead can also apply various design patterns such as factory in order to

enforce certain coding restraints for security.

Security with AOP has been the subject of study in several different publications

[6], [7], [8]. Some of the ones that influenced this paper include the work done by Robin

www.manaraa.com

6

C. Laney and Janet van der Linden [7] where the authors were able to leverage the

power of AOP in order to make significant changes to legacy applications. This was

particularly interesting because often programmers are assigned the task to implement

some improvement to a piece of software that has not been modified for several years

and has little documentation. The authors showed that using AOP programmers can

evolve legacy code and leave behind digital signatures that reduce the likelihood of

breaking existing functionality while enhancing the application overall. In the work done

by Minhuan Huang, Lufeng Zhang, and Chunlei Wang [8], they were able to create a

fully functional library that implements security features across an application using

AOP. Although their library mostly focused on the encryption and decryption aspect of

software security, it showed how similar works could be implemented for other security

issues such as the OWASP top 10.

Seinturier and Hermosillo have done one of the most interesting works in the

area of AOP and Security and it touches very closely to the topic of this research [9].

Their tool, AProSec detects inputs to the web application by using aspects to intercept

potential XSS and SQL Injection attacks. Their aspects then either warn the user or

reject the potentially harmful data input. Their approach was unique in the fact that they

wrote aspects that implement security functionality to the web application servers’ native

libraries without having to modify the web application server code or write their own.

There is no doubt that theirs is a very good tool to have and some of their concepts

such as intercepting request and response parameters were leveraged in the creation of

aspects in this research.

What we’ve learned on the topic of using AOP for security is that it can be a

powerful tool to leverage in the hope to achieving a secure web application. The AOP

paradigm can be used to implement security in legacy code, create a modularized

approach to web application security, and allow developers to use a common approach

to implementing security ranging from broken authentication/session management to

SQL Injection and XSS.

www.manaraa.com

7

1.4.2 Aspect-Oriented Programming and SQL Injection

When looking at the most prevalent web application security vulnerabilities,

injection is typically at the top of the list at every reliable source. SQL Injection tends to

be the most harmful of these and it is ranked as the second most common form of

attack on web applications [10]. The idea of SQL Injection is basically the input of

malicious code that results in the execution of a query that could either steal, or delete

important information. There have been many works on preventing SQL Injection but

very few that use the AOP paradigm.

One of the most extensive works of research done by V. Shanmughaneethi,

Yagna Pravin, and Emilin Shyni uses aspects to analyze a SQL query for potentially

malicious content [10]. This tool uses aspects which call web services to analyze

queries and create errors in order to prevent malicious SQL from being executed. This

is a good approach in theory but the authors do not specifically discuss the implications

of making web service calls with respect to performance and reliability of these web

services. In the book by Justin Clarke [11], he briefly discusses how AOP can be

leveraged to hot-patch applications that are vulnerable to SQL Injection at runtime. He

recommends using one of the AOP implementations such as AspectJ (which is used for

this paper) and Spring AOP to implement checks for insecure dynamic SQL libraries. By

searching different libraries and online journals, it quickly became apparent that there is

not much research done in preventing SQL Injection with AOP. Most of the resources

such as the Clarke’s book only offer a few sentences on how the paradigm could be

used but do not reference any concrete implementations. Even those solutions that do

provide concrete implementations such as the Shanmughaneethi paper, only work as

far as identifying vulnerabilities but don’t do much in the way of fixing them.

Though there is a lack of sources for implementing security with AOP and SQL

Injection, there were several resources that could be referenced in the SQL Injection

prevention effort. The creation of the Intrusion Detection and Prevention System (IDPS)

by Varian Luong [12] provided great insight into the different types of SQL Injection

attacks that a programmer has to keep in mind when creating a secure application. The

tool did detection of the threats and emailed the system administrator as it deterred

www.manaraa.com

8

attackers. Although this approach is preferred in many scenarios, the IDPS has to be

deployed and coded as part of the overall application and does not seem to scale

incredibly well because it would require integration into every new module as it is

developed.

There are also other techniques that are often used to implement security against

SQL Injection attacks. These include Safe Query Objects [13] that encapsulate all

database queries in objects and provide a secure and reliable way of executing

database queries. Another similar approach, SQLDOM [14] uses a strong link to the

specific database schema in order to enforce security by only creating queries from

strongly connected classes. In the work done by V.B. Livshits, the author uses static

analysis to detect SQL Injection vulnerabilities in java applications [15]. Livshits’

research influenced the need for a powerful static analysis tool in order to detect

vulnerabilities and highlighted some of the attributes (i.e. detecting false positives) such

a tool would be required to have. In G. Wassermans’ research [16], the authors

developed a framework for detecting tautologies in a database query. This approach is

very helpful but does not prevent other types of attacks and is usually an incomplete

solution in the scenario where the tautology is complicated or uses a database specific

function. For example, “RAND() > .01” is not technically a tautology, but it most likely will

evaluate to true anyway when the query is executed on the database because the

random number generated will most likely be greater than .01.

The use of static analysis combined with runtime validation is the latest set of

efforts to detect and prevent SQL Injection attacks. One tool, WebSSARI [17], uses

logic to determine whether or not it should do checks for invalid input either at compile

or run time. It then analyzes the users’ input and throws an error if an attack is detected.

While WebSSARI is only compatible with the PHP language, it certainly shows promise

because it attempts to prevent attacks at different stages of the applications execution.

Another modern approach was to create a parse tree of the initial database query and

combine it with the parse tree of the resulting query and then compare the two for

discrepancies. This approach seems to be very effective but requires the developer to

know the exact state of the query before and after any user input which can be

www.manaraa.com

9

complicated when there is complex logic surrounding the building of the query [18].

Another drawback to this approach is that it cannot possibly be used on any legacy

applications where the code uses dynamically structured queries because it would not

be possible to know the before and after states of the queries. There have been several

other studies that use a Non-Deterministic Finite Automaton to create models for

creating possible versions of a static query. This approach while very effective, it was

only proven on very small projects and had no guarantee of the percentage of false

positives [19] [20].

All of the above efforts to eliminate or mitigate SQL Injection attacks work in

some capacity. The one area where they all fall short of expectations is in the fact that

they all require fairly extensive modification to the web applications source code. The

ones that require minimum changes to the source code often require version specific

patches to the application server or the database definitions. The study of these related

works in preventing SQL Injection have solidified the theory that AOP is the ideal

paradigm to use for creating a truly secure web application.

1.4.3 Aspect-Oriented Programming and XSS

Cross-site scripting (XSS) is the most prevalent web application security issue

[21]. The three known types of XSS attacks are stored, reflected, and DOM based XSS

and their main purpose is to steal the users’ credentials via cookie hijacking. The stored

XSS attack is typically injected and then kept inside the database of the vulnerable

application. The injected code is then displayed to various users on a site with forum,

comment, message, etc functionality. When the victim application displays the malicious

code, a script is typically executed to steal the users’ browser data which often includes

email addresses, session variables, and even security keys. Reflected XSS attacks are

often executed by the user being tricked into clicking a malicious link on a website or in

an email. The code that is contained in the link or form is then sent to the vulnerable

web server and the user ends up being a victim because the user thinks the code

originated from a trusted source. DOM Based XSS is different from the first two

because it does not try to change the HTTP response of the application but instead it

www.manaraa.com

10

tries to modify the DOM. The malicious code is passed in as a URL parameter and then

used to modify the DOM of the client [22].

There are numerous reasons for considering the elimination or mitigation of XSS

in this paper. One prime example is the September 2010 attack on Twitter where the

attacker (a 17 year old) was able to exploit the “onMouseOver” event to steal

information of many users [25]. In October 2010, the American Express website was

under attack and the resulting vulnerability was XSS; the company’s 6th in recent history

[26]. While there are thousands of XSS attacks every day, it is important to remember

some statistics on attacks that affect applications that transfer some of our personal

data daily. According to the Web Hacking Incidents Data Report of 2010, 26% of attacks

on the attacks on government succeeded in defacing that organization, 64% of attacks

on the finance industry resulted in monetary loss, and 27% of attacks on the retail

industry resulted in credit card leakage [27]. This is particularly disturbing to most

people who might do online banking and purchasing considering that over a quarter of

all attempts on seizing their most valuable data were successful.

AOP can be used to mitigate and in some cases eliminate XSS vulnerabilities in

web applications. This is especially true when the application in question would require

a complete re-write in order to achieve security [23]. According to OWASP, the best two

ways to prevent XSS is to escape all untrusted data based on the content of the web

page and to do whitelist validation on user inputs [21]. Using AOP, a developer can

create aspects to intercept incoming and outgoing data that would be displayed to the

user and apply either escaping or whitelisting without modifying the existing source

code. Mece and Kodra [24] were able to create a XSS validation aspect that does

whitelisting of user inputs. Their “validator” aspect treated all strings that were not

alphanumeric as potentially dangerous and denied them. While this is certainly a very

safe approach, applying such restrictions onto an existing application would most

certainly break functionality because many applications require inputs much more

complicated than just an alphanumeric string.

There have been multiple studies with the intent to use AOP to eliminate XSS

vulnerabilities [28] [29] [30]. However, most of these simply discuss the idea of using

www.manaraa.com

11

aspects in order to achieve security and very few have working implementations. The

ones that do have implementations, they are often very simple that only show the

potential usefulness of the AOP paradigm and do not offer any in-depth solutions. This

was a motivating factor in the writing of this paper because the intended outcome is to

create a robust program that applies security to any existing Java web application.

1.4.4 Static analysis tools and the Fortify SCA.

In the effort to eliminate or mitigate two of most dangerous threats to web

applications, it is a necessity to be able to detect where the vulnerabilities are located in

the source code. One of the best tools for source code analysis is Fortify, the winner of

the 2011 CODiE awards for “Best Security Solution” [32]. This tool is the vendor of

choice for a large number of Fortune 500 companies in the energy, financial,

healthcare, e-commerce, media, and several other major industries. Fortify has dozens

of case studies on their website that highlight some of their success in the software

security industry. One such case study, at a large international bank, showed how

Fortify can be successful on large scale projects that exceed 50 million lines of code

[31]. The reason for choosing Fortify for this thesis was its success in real world

applications, its recommendations by OWASP, and it was a commercial tool available to

the research students and faculty at NKU. Fortify was used to analyze three different

open source Java web applications for vulnerabilities that would then be mitigated using

the AOP approach.

1.5 Thesis Statement

The question that we want to answer in this thesis is the following:

Can a tool that mitigates SQL Injection and Cross Site Scripting

vulnerabilities in Java web applications be created while maintaining

performance and without modifying source code?

While working to answer this question, several others must be asked and addressed

accordingly:

www.manaraa.com

12

• What programming techniques must be used to maintain the same source code?

The Aspect Oriented Programming paradigm must be fully leveraged in order to

not modify existing source code, have all required code in a centralized place,

and to decrease the possibility of introducing bugs [5].

• How can we minimize the number of false positives? There are instances where

a valid input could be seen as a threat. These scenarios must be handled with

care so that existing functionality does not break.

• How will the tool prioritize detected vulnerabilities? The tool must be able to

determine whether a vulnerability will be addressed based on its potential

performance impact and threat level.

• What are the implications of using code weaving to mitigate vulnerabilities?

Without visible changes to the original source code, could it become increasingly

difficult to debug or could it also help decouple security oriented code out of the

core business logic? A goal will be to weigh the benefits of this technique based

on code maintainability and readability.

• How will contextual output be encoded and escaped? User input can vary in

context and a goal will be to identify the context and use the correct technique to

escape or encode the values.

• What methods must be used or created to eliminate SQL queries that are not

secure? An important piece will be to create algorithms for rewriting insecure

dynamic queries. Will these algorithms need to be created from scratch or will

they leverage existing query parsing tools? And if so, which ones offer the best

performance?

1.6 Overview

The remainder of this thesis is structured as follows. Chapter 2 will go into detail

on the approach for mitigating SQL Injection and XSS in Java Web Applications. It will

discuss the strength of the approach as well as potential weaknesses. Chapter 3 will go

into the implementation of the program written to achieve the task and any specific

algorithms necessary. Chapter 4 will analyze the results of the efforts and cover

www.manaraa.com

13

evaluation of the resulting program. Chapter 5 will summarize and conclude the text as

well as cover the intent and planning for any future works.

Chapter 2 Approach

2.1 Choosing the AOP Library

There are several different open-source AOP libraries available for the Java

programming language. Some of these include AspectJ, AspectWerkz, JBoss AOP, and

Spring AOP [33]. The three main categories that these libraries fit into are XML based,

annotation based, and language extension based. One of these, AspectJ is both

annotation based and has a language extension capability. The approach to

determining which one to use was influenced by the amount of documentation available,

real-world implementation, and learning curve associated with using that particular

library with an existing project.

AspectJ was the first tool evaluated for the approach and ultimately the AOP

implementation used in this paper. It was chosen because of its Java language

extension capability that results in a very intuitive way of writing aspect code. The tool

also has a very robust Eclipse IDE plug-in (AJDT) since it is a child project under the

Eclipse open source umbrella. The plug-in has several extremely helpful features that

make implementing AOP and cross cutting concerns much easier due to a very

advanced user interface. With this interface (as described in figure 1 [34]), the user is

able to view exactly where their aspect is and what parts of the code it’s affecting. In (1)

the defined aspects are marked by specific color and text which can be expanded to

display the names of the different pointcuts and advices’ that are defined in each

particular aspect. In (2) and (3) there is a red arrow that displays to the programmer the

different areas of the source code that a particular advice is going to act upon. The user

can drill down and inspect each piece of source code and then modify the pointcut if

they want to add or remove the code the advice will act upon. If the user is browsing

through source code, the AJDT plug-in will give them an orange arrow to signal that an

aspect is affecting that particular function call as shown in (4). The AspectJ project has

www.manaraa.com

14

a very rich history from the time when it was first created at the Xerox Palo Alto

Research Center (PARC) to the integration into the eclipse project in 2002. The project

continues to be developed regularly and interest and implementation has been

increasing exponentially [35].

Figure 1 - AJDT Plugin Interface Example

AspectWerkz is another lightweight, open-source AOP implementation for Java.

This library was soon removed from consideration since it merged with AspectJ

mentioned above in 2005 [36]. The resulting product was AspectJ 5+ which contained

support for annotations and other features from AspectWerkz such as faster load time

weaving and Java 5 support. There was strong consideration given to the JBoss AOP

project because it had IDE support and an extensive library for implementing aspects.

However, the project does not seem as mature as the AspectJ and AspectWerkz

combined implementation. The Spring AOP implementation is also robust and effective

but it was found that there is significant effort required to implement it outside of the

Spring framework. After evaluating multiple implementations of AOP for Java, AspectJ

www.manaraa.com

15

proved to be the logical choice based on all the features and simplicity of

implementation.

2.2 Evaluation and Selection of Projects for Case Studies

In order to create a program that mitigates SQL Injection and XSS vulnerabilities,

it is necessary to prove the success of the implementation on real world, enterprise level

Java web applications. It was necessary to use open source web applications because

they offer fully available source code that could be analyzed. The three applications

chosen to act as case studies for this project were:

1. Alfresco – an enterprise content management system with over 670 weekly

downloads from SourceForge.net [37].

2. Apache OFBiz – an open source ERP, CRM, E-Commerce, SCM, MRP, POS,

etc… framework hosted on FreshMeat.net and Github.com

3. JadaSite – an open source E-Commerce implementation in Java with over 140

weekly downloads from SourceForge.net [38].

Alfresco was chosen because it is an enterprise level application with many

modes of user input, which results in many potential SQL Injection and XSS

vulnerabilities. The application is built using Java JDK 5, uses a MySQL Database, and

is typically deployed on a Tomcat 5.0+ web application server. The project also has a

very active community that makes updates and enhancements on a daily basis as well

as a commercial version of the product with support from the Alfresco team of

developers. The application has thousands of classes and makes use of many Web 2.0

technologies such as CSS3 and AJAX.

The Apache OFBiz project is one of the largest and popular open source

applications available. The application is considered one of the top E-Commerce

frameworks used by many large corporations and is considered one of the top 10 ERP

implementations available [39]. This Java application can be deployed on multiple

application servers and is database agnostic meaning that it can use any database that

has a JDBC driver associated with it. The E-Commerce industry is often victim to many

www.manaraa.com

16

attacks because it deals with PII such as physical addresses, email addresses, and

credit card numbers of millions of people daily. OFBiz was considered for this thesis

because it’s important to prove that vulnerabilities can be mitigated in a large scale ERP

and E-Commerce platform.

The JadaSite application is more of a pure E-Commerce platform built on Java

that offers multi store support with capabilities to support multiple languages and

datasets. This project was chosen in order to ensure support for mitigating

vulnerabilities where user inputs can contain different character sets.

2.3 Approaches for Static Code Analysis

The Static Code Analysis (SCA) tool used for this project was the Fortify SCA.

One of the reasons this tool was selected is because of its extensive use in the work

done at NKU on analyzing vulnerabilities in 14 different PHP web applications [40].

Another major reason is that Fortify is one of most robust SCA tools available. The tool

also has an Audit Workbench program that allows the user to use the result of the SCA

to audit the vulnerabilities detected. The workbench also has a very useful export

feature that allows the user to get an XML or PDF version of the report. The report

contains some very useful information such as the location of the vulnerabilities (line

number and file), the priority, abstract definition, and category (see figure 2 below). The

report also contains the source and sink locations for each of the vulnerabilities

detected. The vulnerability source section refers to the location of the code where the

vulnerability occurs and the sink refers to the root cause of the vulnerability.

www.manaraa.com

17

Figure 2 - Vulnerability Description from Fortify Report

The Audit Workbench program’s ability to export the report in multiple formats

such as XML made it more convenient to analyze the data with an XML parser available

to many programming languages such as Java. The Fortify SCA is also used and

recommended by Brian Chess and Jacob West, the authors of “Secure Programming

with Static Analysis” [41]. Using this tool was the logical choice since it was proven to be

effective in detecting major vulnerabilities such as SQL Injection and XSS on many

projects in several programming languages.

2.4 Mitigation Technique Selection

Before deciding on which approach to use for SQLI and XSS vulnerability

mitigation it is important to analyze several different techniques and determine which

are best suited for an effective and efficient AOP security implementation. The various

techniques analyzed come from OWASP because it is an authority on web application

security and a comprehensive source for eliminating or mitigating the top ten threats.

The three primary defenses against SQL Injection are the use of parameterized

queries, stored procedures, and escaping user input. An additional defense is to do

white list input validation in order to prevent input of incorrect format to be added to the

query. For the AOP implementation, the options chosen for mitigating SQL Injection are

www.manaraa.com

18

to do escaping of all user supplied input and perform white list validation. The choice to

escape user input comes from the fact that it is the most straightforward approach that

does not require the modification of legacy code. Aspects can be written to intercept

and analyze the query and then escape all expressions before it is executed. The

approach to use prepared statements or stored procedures aren’t feasible because they

would require extensive rewriting of dynamic query code and therefore modifying

existing source code and possibly introducing bugs or unwanted behavior. The

escaping method is also preferred because OWASP provides a security encoding

library for the Java programming language and support for multiple database types such

as MySQL and Oracle.

OWASP provides several rules for preventing XSS that are necessary to prevent

scripts from being executed or stored into an application. These rules include items

such as not allowing insertion of untrusted data except in specific locations, escaping

HTML input, escaping attributes, escaping JavaScript, and escaping of several other

types of possible input. The ESAPI encoding library is also used for doing the various

types of encoding. Since it is impossible for the program to determine what types of

input are to be inserted at each point, the developer executing the program created in

this thesis will have to specify the type of encoding to be done. This approach was

chosen over writing custom encoders because the ESAPI library has a comprehensive

set of encoders for validating any type of input the user can provide. The XSS mitigation

technique of white list validation is also implemented in this thesis. The user is able to

choose from a list of default white list templates such as alphanumeric but they also

have the ability to apply their own custom regular expressions. The AOP

implementation is able to support the ESAPI encoding and validation libraries as well as

the ability to apply custom regular expressions at each join point identified.

2.5 SQL Injection Mitigation Approach

There are several ways to approach fixing SQL Injection vulnerabilities in a web

application. Since the vulnerabilities given by Fortify SCA are part of the legacy code of

an application, it’s important to come up with a method of fixing them without the need

to modify it. AOP was chosen for this task because the paradigm can be used to write

www.manaraa.com

19

pointcuts that advise upon the exact file and line number given by the SCA. The

approach can be summarized by the following steps:

1. Use the Fortify SCA result to export the report in a XML format. Exporting the result

in this format will allow the program to parse the XML file easily and load the

different vulnerabilities into Java Beans.

2. Isolate the SQL Injection vulnerabilities from all others in the exported report and

identify the source and sink locations of the individual vulnerabilities. This step will

also load the issues into individual Java objects and put into a list of SQLI

vulnerabilities

3. Analyze the source and sinks for each issue and then specify which functions

pointcuts will need to be required for. It will be necessary to determine how many

parameters the function has and which parameters will need to be intercepted as

well as the data type of the parameters.

4. The program will need to be able to implement different types of fixes for each issue.

This can include encoding or rejection of potentially harmful data as well as rewriting

of potentially harmful parts of the database query at runtime.

5. In order to eliminate false positives and prevent unnecessary writing of pointcuts, the

user will be asked if they want to fix individual SQLI vulnerabilities detected and what

kind of fix they need the program to implement.

6. Once the user provides their input, the program will determine what vulnerabilities to

create pointcuts for and will make sure that each pointcut is only executed in the

location that the user has specified. Locations are identified by the source file name

and the issues individual line number within that file.

7. The user will then be given a Java Archive File (JAR) that will contain the necessary

libraries to fix their vulnerabilities as well as the corresponding SQL Injection

Prevention aspect.

8. The user will need to compile their application using the AspectJ compiler, AJC with

the given JAR file and SQL Injection Prevention aspect by putting them in the build

path of their application and incorporating the files into their build process.

www.manaraa.com

9. Once the application is built, the use

normal and the specified fixes for SQL Injection will take effect at runtime whenever

the code identified by the SCA is executed.

Figure 3 - SQL Injection Aspect Creator

The generation of potential fixes (4) will be determined by The OWASP

Enterprise Security API (ESAPI) libraries capabilities. Today, large banking corporations

like American Express implement ESAPI in their efforts to achieve security and major

government organizations such as the Space and Naval Warfare Systems Command

use it as well [42]. The ESAPI is typically used to encode or validate user input that

could be identified as SQL Injection.

In step five the user is asked to eliminate false positives. The program w

provide them with a list of potential fixes for each SQL Injection issue detected by the

SCA. The user will then provide an input that will correspond to a specific fix for that

vulnerability. It is important to note that the user can select not to cho

eliminate that particular issue as a candidate for the pointcut implementation in the

aspect code.

Some of the challenges and limitations of the above approach are imposed by

the specific encoding libraries used for the data and the

encoding for various types of SQL dialects such as Oracle and MySQL. Another

important limitation is the lack of being able to detect an injected tautology. It soon

20

Once the application is built, the user should be able to deploy their application as

normal and the specified fixes for SQL Injection will take effect at runtime whenever

the code identified by the SCA is executed.

SQL Injection Aspect Creator

tion of potential fixes (4) will be determined by The OWASP

Enterprise Security API (ESAPI) libraries capabilities. Today, large banking corporations

like American Express implement ESAPI in their efforts to achieve security and major

ons such as the Space and Naval Warfare Systems Command

use it as well [42]. The ESAPI is typically used to encode or validate user input that

could be identified as SQL Injection.

In step five the user is asked to eliminate false positives. The program w

provide them with a list of potential fixes for each SQL Injection issue detected by the

SCA. The user will then provide an input that will correspond to a specific fix for that

vulnerability. It is important to note that the user can select not to cho

eliminate that particular issue as a candidate for the pointcut implementation in the

Some of the challenges and limitations of the above approach are imposed by

the specific encoding libraries used for the data and the fact that they only support

encoding for various types of SQL dialects such as Oracle and MySQL. Another

important limitation is the lack of being able to detect an injected tautology. It soon

r should be able to deploy their application as

normal and the specified fixes for SQL Injection will take effect at runtime whenever

tion of potential fixes (4) will be determined by The OWASP

Enterprise Security API (ESAPI) libraries capabilities. Today, large banking corporations

like American Express implement ESAPI in their efforts to achieve security and major

ons such as the Space and Naval Warfare Systems Command

use it as well [42]. The ESAPI is typically used to encode or validate user input that

In step five the user is asked to eliminate false positives. The program will

provide them with a list of potential fixes for each SQL Injection issue detected by the

SCA. The user will then provide an input that will correspond to a specific fix for that

vulnerability. It is important to note that the user can select not to choose a fix which will

eliminate that particular issue as a candidate for the pointcut implementation in the

Some of the challenges and limitations of the above approach are imposed by

fact that they only support

encoding for various types of SQL dialects such as Oracle and MySQL. Another

important limitation is the lack of being able to detect an injected tautology. It soon

www.manaraa.com

21

became necessary to create a tautology detector for SQL queries because the attacker

could inject tautologies such as “2 > 1” which would be evaluated to true. The aspect

will need to detect such simple tautologies with different types of operators in mind and

prevent them from being executed. One of the requirements for a successful

implementation of the SQL Injection aspect and generated JAR file will be to compile

the application using the AspectJ compiler. This may require the user to make

modifications to their applications build script but will not require any changes to existing

source code.

2.6 XSS Mitigation Approach

The Cross-site Scripting (XSS) approach will be similar in concept to the SQL

Injection approach but will differ quite a bit in implementation. The XSS approach will

implement a whitelist functionality that the user will have control over. The program will

have to handle three main types of XSS threats that are detected by the Fortify SCA.

The approach for mitigating XSS in Java web applications using AspectJ is outlined in

the steps below:

1. Use the Fortify SCA result to export the report as an XML data file. This file will

contain all the SQLI and XSS vulnerabilities of all types together in one location.

The program will need the data in this particular format in order to parse it

correctly.

2. The program will need to isolate the XSS vulnerabilities. It will need to make sure

that it exports all three major types; persistent, reflected, and poor validation that

is detected by the SCA. This will be done by parsing the particular “Category”

nodes of the XML file and matching the value with the vulnerability name.

3. Next the identified XSS vulnerabilities will need to be stored into objects and the

individual sources and sinks will need to be identified. Each source and sink will

typically be associated with a method call within the source code. These function

calls will need to be identified and stored into an XML file where they can later be

referenced. Some of the information that will need to be captured in this step for

each function is the number of parameters the method has and the data type of

www.manaraa.com

22

each of these parameters. This is done so that the pointcut can later be created

using this data.

4. The program will then need to generate a list of potential fixes based on the

vulnerability. For XSS, this will be a list of whitelist options that the user will later

have to choose from. These options are mostly provided by the ESAPI library

mentioned above along with some of the more common whitelist regular

expressions for web applications.

5. In this step the user will be asked to eliminate false positives. The user will be

required to provide their input on whether or not they want each issue fixed and if

so, what kind of validation they require to be done. If the user is not satisfied with

the list of whitelist options, they should be able to provide their own regular

expression that will then need to be implemented.

6. Once the users options are captured, an aspect will need to be created that will

apply all the validation desired. With the validation implementation being in an

aspect, the user will not need to modify their source code in order to have the fix

take effect. In the creation of the aspect and its pointcuts, the execution of each

one at runtime will be timed and logged using a logging functionality. This will

ensure that the user has complete record of each piece of validation being

executed.

7. Once the aspect is created, it will need to be exported so that the user can

implement it into their insecure application. The program will export several other

files necessary for the fixing of XSS vulnerabilities as well. The JAR file provided

to the user will contain the necessary ESAPI libraries, logging libraries, and

classes necessary for executing the validation. The XSS prevention aspect that

is generated will also be provided outside of the JAR file.

8. Using the JAR file and aspect generated the user will need to include them in

their project. The JAR file will typically be included into the lib of the project and

incorporated into the build path in the users’ application. The XSS prevention

aspect will be put into the package structure of the application and the user will

need to build the project with the AspectJ compiler.

www.manaraa.com

9. When the application is successfully built, the user will need to deploy and

execute their application as usual. The application will then have all of the

desired validation implemented at runtime because the XSS prevention aspect’s

advice code will be wea

first step.

Figure 4 - Creation of the XSS Mitigation Aspect

In step (2) the program will need to parse each Issue node of the XML and look

for each of the three different

need to be also identified manually by analyzing the different types of functions that are

reported to have XSS vulnerabilities. Each of these functions will be identified and their

attributes will be stored into the XML file for later reference by the program. Figure 5

shows the data that will need to be parsed and put into individual objects in the code as

specified by bullet (3) above.

In step 5 for the XSS prevention aspect creation the process d

SQLI aspect approach in a couple of ways. First, the program will provide the user with

a different set of solutions that are specified by the ESAPI for XSS prevention. The user

will also have the feature of providing their own whitelist re

the default list provided for them is incomplete. This will ensure the least amount of false

positives because the user, presumably someone with extensive experience with the

23

When the application is successfully built, the user will need to deploy and

execute their application as usual. The application will then have all of the

desired validation implemented at runtime because the XSS prevention aspect’s

advice code will be weaved into the classes specified by the Fortify SCA in the

Creation of the XSS Mitigation Aspect

In step (2) the program will need to parse each Issue node of the XML and look

for each of the three different types of XSS vulnerabilities. The source and sinks will

need to be also identified manually by analyzing the different types of functions that are

reported to have XSS vulnerabilities. Each of these functions will be identified and their

e stored into the XML file for later reference by the program. Figure 5

shows the data that will need to be parsed and put into individual objects in the code as

specified by bullet (3) above.

In step 5 for the XSS prevention aspect creation the process d

SQLI aspect approach in a couple of ways. First, the program will provide the user with

a different set of solutions that are specified by the ESAPI for XSS prevention. The user

will also have the feature of providing their own whitelist regular expression if they feel

the default list provided for them is incomplete. This will ensure the least amount of false

positives because the user, presumably someone with extensive experience with the

When the application is successfully built, the user will need to deploy and

execute their application as usual. The application will then have all of the

desired validation implemented at runtime because the XSS prevention aspect’s

ved into the classes specified by the Fortify SCA in the

In step (2) the program will need to parse each Issue node of the XML and look

types of XSS vulnerabilities. The source and sinks will

need to be also identified manually by analyzing the different types of functions that are

reported to have XSS vulnerabilities. Each of these functions will be identified and their

e stored into the XML file for later reference by the program. Figure 5

shows the data that will need to be parsed and put into individual objects in the code as

In step 5 for the XSS prevention aspect creation the process differs from the

SQLI aspect approach in a couple of ways. First, the program will provide the user with

a different set of solutions that are specified by the ESAPI for XSS prevention. The user

gular expression if they feel

the default list provided for them is incomplete. This will ensure the least amount of false

positives because the user, presumably someone with extensive experience with the

www.manaraa.com

24

application, will have control over what parts of their application they need to implement

security into.

The next several steps will require the application developers’ effort. The

developer will need to use the AspectJ compiler in order to do the compile time weaving

required for the aspects to be woven into the application and the vulnerabilities to be

fixed. The application will provide the developer with the proper documentation that will

cover the download and installation of the compiler and all software that is required for

these steps. Since the AspectJ compiler (AJC) is just an extension of the Java

language, the user will not need to have any special version of the JDK installed in

order for the aspects to work as intended. The AOP code will seamlessly work with the

users existing Java version.

2.7 Determining Success Criteria

The success criteria of this project will vary between the efforts to mitigate SQL

Injection and XSS. This section of the chapter will be organized into three sections. The

first will be the success criteria for SQL Injection, the second will be for XSS and the

third will be the cost of fixing the vulnerabilities with respect to performance.

2.7.1 Success Criteria for SQL Injection

When determining success criteria for SQL Injection mitigation, it’s most

important to keep in mind the application performance and the assurance that the

application will continue to function without additional error. In order to achieve this,

several critical tests must be done. First, the application’s logic that does the SQLI

mitigation will need to be extensively unit tested at the method level. Second, all three

applications used for the case study will need to be tested. This testing of the

applications will be manual and since it would be nearly impossible to test each

pointcut’s execution manually because of the size of the application, the pointcuts will

only be spot tested. In the testing of the pointcuts, the result of each request will be

compared to the normal execution of the application and if there are any exceptions, the

pointcut will be considered a failure. Third, each piece of code executed in the effort to

mitigate SQLI will be timed. The elapsed time to fix each of the vulnerabilities will then

be analyzed and any code that is found to be too expensive to execute will be omitted.

www.manaraa.com

25

2.7.2 Success Criteria for XSS

In the effort to mitigate XSS, the XSS Preventions Aspect biggest success

criteria will be to validate the applications input and outputs affected by the pointcuts

without affecting normal execution flow. Although each part of the validation will be

timed and analyzed, the length of time to whitelist a user’s is typically negligible

because it is simple string manipulation. The challenge to maintain normal execution

flow comes from the ESAPI libraries that are used to do the whitelisting and validation.

These libraries typically throw varying exceptions when the validation fails so it will be

critical to handle these as they arise. The XSS prevention aspect will also be spot tested

in all three enterprise applications used for this research. Since the user has the ability

to enter a custom regular expression for the whitelisting functionality of the aspect, the

application will have to gracefully handle regular expressions in incorrect format.

2.7.3 Success Criteria for Performance

The performance success criterion for the XSS and SQLI prevention aspects is

perhaps the most important to keep in mind when applying security. Since the AOP

paradigm is weaving code that fixes vulnerabilities into the applications legacy code, it

will be important to not affect the users experience when using the application. In order

to ensure this, the application will have to make sure that no particular path of execution

for the vulnerabilities exceeds an allotted amount of time. Every possible path of

execution will need to be timed and analyzed by the JUnit 4 test suite for the Java

programming language. These tests will verify that the application performs successfully

various tests in a reasonable amount of time. Tests will be containing both normal input

parameters as well as possibly malicious ones and will come from various sources

including OWASP.

These JUnit tests will be created for both the XSS and SQLI aspects and will

contain scripts to run every possible combination of attacks and mitigation algorithms

that the aspects would possibly execute in a live application environment. Once the

aspects are deployed as part of an application, each execution of individual pointcuts

will be timed and logged using Log4j and made available to the user for analysis. If the

www.manaraa.com

26

user is ever unsatisfied with the performance of the AOP implementation, they would

simply have to redeploy their application without the aspects and corresponding

libraries.

www.manaraa.com

27

Chapter 3 Implementation

 This chapter will go into details regarding the process of successfully creating

and implementing SQL Injection and XSS prevention aspects in Java web applications.

The aspects will be created and tested for the Alfresco, JadaSite, and OFBiz

applications chosen as case studies for this paper. The remainder of this chapter will be

organized as follows. The first section will describe the effort of choosing these three

applications and static analysis efforts of each one. The second section will go into

detail of analyzing the results of the Fortify SCA and using them to create the different

SQL Injection and XSS Mitigation aspects. The third section will contain the

implementation of algorithms to mitigate SQLI and XSS vulnerabilities. The fourth

section will give a description of the deployment process for the aspects and the aspect

generator’s user interface.

3.1 Identifying Case Studies and Static Analysis

 This section will discuss the case studies chosen to act as validation for the

papers’ success. Each of the projects were retrieved from various open source libraries

available on the Internet and specific reasons for choosing them will be discussed

below. The section will also explain the process that is required to analyze the source

code for each application and will provide a thorough explanation on the steps are

required to achieve a consistent and valid result.

3.1.1 Criteria for Applications to Analyze

 In order to successfully implement this program, it soon became obvious that a

major success factor would be to provide examples of how it could be applied in a real

world scenario. We have chosen to use three open source applications as case studies

to prove the program is valid and applicable across different industries. In order to find

these projects, websites such as FreshMeat.net, SourceForge.net, and GitHub.com

were searched since they contain large amounts of open source Java based projects. In

the search process there were several criteria that needed to be met in order to make

sure that the projects were compatible with the chosen AspectJ AOP implementation.

 Some of the criteria for choosing the projects include the fact that it has to be a

Java program because of the AOP implementation, AspectJ. Since the main focus of

www.manaraa.com

28

this implementation is preventing XSS and SQLI in web applications we limited the

search to applications with web based architectures. It was also important to choose

applications that had enterprise level implementations in the real world because it would

potentially show how insecure these current implementations might be and also solidify

that the efforts of this paper are necessary. Another important aspect in choosing the

case studies comes from the frequency of change submissions and general activity of

each application’s user community. Choosing applications that have an active

community meant that if the source code analyzer was able to find vulnerabilities, and

the program was able to mitigate vulnerabilities, then the successful AOP

implementation would be much more significant since vulnerability mitigation would be

proven on active projects.

 In the process of choosing case studies it was important to choose applications

that fit within the range of technologies that are available to the project. One of these

restrictions was the decision to use the ESAPI from OWASP in order to do whitelisting

and encoding capabilities. For this reason, applications with the database

implementations that did not support MySQL or Oracle were excluded. This is because

the ESAPI encoder library supports only two types of codecs when doing SQL

encoding. Although the AOP implementation created by this project does not limit the

functionality for individual application servers, for testing purposes it was necessary to

choose only projects that supported deployment with an Apache Tomcat application

server. This was done because the Tomcat server is open source and it supports

multiple versions of the Java programming language and could be easily deployed on a

Windows operating system where the testing was done. Another technology that was

chosen solely for the purpose of simplifying testability was the choice to only choose

Java applications built on top of Java 5 or Java 6. This would make the testing of each

of the projects easier because it did not require several different installations of Java on

the same machine used for testing.

 One of the final criteria that had to be fulfilled was the general size of the

application. Applications with less than three hundred class files were omitted from

consideration because they were typically not robust enough to be considered

www.manaraa.com

29

enterprise level implementations. The process for doing this type of elimination

consisted of searching through the various applications’ source repositories and

validating the size of their source code directories. As each of the criterions was

considered, the list of candidate applications dwindled.

3.1.2 Identifying Applications for Case Studies

 With all of the restrictions applied from the criterion above, the list of applications

wasn’t too long as they were applied to all three online databases searched. One of the

first results considered was the Alfresco Open Source Content Management (ECM).

This project provides document management, collaboration, records management,

knowledge management, web content management, and imaging for businesses.

Alfresco makes use of some of the latest Java technologies such as the Spring MVC

framework, Hibernate Object Relational Mapping (ORM) framework, and advanced

search indexes such as Lucene. Alfresco was chosen because it has several enterprise

level implementations in the real world. Companies such as Endeca, Yell.com, Orbitz,

and Office Depot all make use of this applications powerful ECM solution [43]. The

framework is a leading open source alternative for enterprise content management and

it has over 140 thousand community members, over two-thousand enterprise

customers, and over three million downloads. Since Alfresco is generally a content

management system, this meant that this application typically has many opportunities

for users to submit custom input. This was one of the reasons that this application was

chosen since each source of users’ input could potentially be a SQLI or XSS attack. The

application also supports the MySQL database that made it compatible with the ESAPI

encoder libraries. The Alfresco application also has a very active community. The users’

forums are very active with very recent change requests and feature suggestions. The

applications’ developers were also proven to be active with regular code submissions

with frequencies of at least once a month.

www.manaraa.com

30

Figure 5 - Alfresco Architecture

 The second open source project chosen was Apache’s OfBiz. This application

that is under the Apache open source umbrella is considered one of the best Enterprise

Resource Planning (ERP) implementations available today. The OfBiz project is

database agnostic and will function with any database that has a JDBC driver available.

This agnostic approach to the data layer means the data is organized in an Object

Oriented fashion with a relational database concept in mind. The presentation layer is

typically composed of Java Server Pages (JSPs), and Widgets which are unique to this

framework. The business layer of the application is composed of thousands of Java

classes that are organized in a Model View Controller (MVC) framework. The project

also makes use of several other technologies such as Apache Ant which would become

important when compiling the application using the AspectJ compiler. The fact that this

project implements a non-traditional framework will also show how the power of AOP

www.manaraa.com

31

can be leveraged to work with projects that tend to break the mold of traditional Java

frameworks.

Figure 6 - OfBiz Architecture

 The OfBiz project also has some other aspects that made it appealing for

analysis. The project has a very active community with new code being submitted for

either enhancements or bug fixes on a daily basis. The projects’ customers also include

some enterprise level implementations such as 1800flowers.com (E-Commerce), DKNY

(E-Commerce), and BT.com (UKs largest ISP). The appeal towards OfBiz extends to

the fact that E-Commerce applications, the most common implementation of this

framework, are often the victim of many XSS and SQLI attacks because it collects PII

such as credit card information and addresses from thousands of users every day.

 The third open source project chosen for this paper was JadaSite. This

application is another implementation with an E-Commerce capability similar to that of

OfBiz. The main factor that differentiates this project from the others is its support for

international storefronts and character sets. This application also makes extensive use

of multiple web 2.0 technologies such as AJAX and WYSIWYG user interfaces. The

www.manaraa.com

32

JadaSite project makes use of a MySQL database and uses JSPs as the primary

source for generating the view for the user.

 In the search for enterprise level implementations of Java web applications;

these three selections seemed to be most suitable for the task at hand considering the

criteria that needed to be enforced from the previous section. The projects selected are

thought to be sufficient in ensuring success for a program that successfully mitigates

SQLI and XSS vulnerabilities. The fact that these three applications have different

implementations using similar technologies gives confidence in the fact that a solution

that successfully mitigates these attacks for these projects can be applied to others as

well.

3.1.3 Using the Fortify SCA

 The ability to detect vulnerabilities in the three web applications chosen for case

studies is the first step in creating a program that mitigates SQLI and XSS. Some of the

benefits of using the Fortify SCA include [44]:

• Ensuring that software is trustworthy – The tools’ technology identifies more

vulnerabilities than any other detection method.

• Prioritizes Security Vulnerabilities – Provides information to the user on which

issues need to be resolved first.

• Correlated Results – Correlates results across static and dynamic analysis to

lower the chance of critical software vulnerabilities not being detected.

• Provide Best Practices – Provide the user with guidance on how to fix individual

vulnerabilities detected by the SCA.

In order to use the Fortify SCA, it was necessary to have it installed and have the scan

server running. The program was installed at the NKU facilities and the hosting server

could be accessed remotely. Before the source analysis can be initiated on a code

repository, each of the projects had to be copied onto the same server as the SCA. The

three projects selected all had either subversion or CVS remote repositories that were

available to check code out of. The version chosen from the remote repositories is the

latest stable version of each application.

www.manaraa.com

33

Figure 7 - Checking out Case Study Projects

Once the projects were checked out, they had to be prepared for the source code

analyzer. In order for the analysis to execute successfully, there could not be any build

path issues such as duplicate definitions of class files. To prevent such issues, each

projects corresponding .classpath file had to be considered and all classpath entries

that were specified to be excluded had to be removed from consideration before

executing the SCA on each of the projects. Once the classpath and build paths of each

project were determined, the scan could be executed as illustrated in the figure below:

Figure 8 - Executing the Fortify SCA

www.manaraa.com

34

When the source code analyzer is executed, the first step is called the translation

phase. This phase uses the sourceanalyzer command to translate all of the libraries

necessary to compile the project and its source code. Since the translation phase is

memory intensive, it was necessary to provide a flag for the command to have 2GB of

heap space available. Since the server was on a 64 bit OS, the -64 flag was necessary

to execute the command under the 64 bit JRE. The –b parameter of the command

corresponds to the build ID for the particular project that would later be referenced by

the scan step of the analysis process. Other attributes such as the Java version the

application uses, necessary libraries, and source code files to execute needed to be

specified as well.

In the Analysis/Scan phase of the process, the intermediate file generated by the

translation phase is scanned and the analysis results file (FPR) is created. The

sourceanalyzer command is executed with the –scan, -b, and –f attributes. The –b

attribute represents the build ID specified in the translation phase, the –scan attribute is

used to tell the source analyzer to execute the scan phase, and the –f attribute specifies

the resulting FPR file name.

3.1.4 Using the Fortify Audit Workbench

 The Fortify Audit Workbench (AWB) product allows users to analyze the result

given by the source code analyzer. The workbench has the ability to drill into specific

issues to make auditing of issues easier. One of the biggest strengths of the AWB is the

user interface design and the report generation features. Reports can be generated in

several different formats such as .xml, .doc, .html, .pdf, and more. The report generation

feature can also export the data in several methods. The method used for this paper

was the “OWASP Top 10 – 2010” report which exports these top web application

security threats this thesis covers [45]:

1. A1 – Injection

Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted data

is sent to an interpreter as part of a command or query. The attacker’s hostile

www.manaraa.com

35

data can trick the interpreter into executing unintended commands or accessing

unauthorized data.

2. A2 – Cross Site Scripting (XSS)

XSS flaws occur whenever an application takes untrusted data and sends it to a

web browser without proper validation and escaping. XSS allows attackers to

execute scripts in the victim’s browser which can hijack user sessions, deface

web sites, or redirect the user to malicious sites.

 Since this paper only focuses on SQLI and XSS vulnerabilities, it was necessary

to only export those two categories which are the top two according to OWASP to

minimize the file size. The next step was to export reports for all three FPR files

generated. The three files, jada_java.fpr, ofbiz_java.fpr, and alfresco_java.fpr were

opened using the AWB and reports were generated in both XML and PDF formats for

analysis. The results were exported and are shown in the figures below:

Figure 9 - Apache OfBiz Report Results

www.manaraa.com

36

Figure 10 - JadaSite Report Results

Figure 11 - Alfresco Report Results

With the reports all generated in XML format as well, the task of using the AWB was

completed and the tool did not require any further use. The next step was to use the

generated files and write a program to analyze them.

3.2 Fortify SCA Result Analysis

This section will go into detail on the effort to analyze the results of the source

code analyzer and the audit workbench. The second part of this section will discuss the

process required to identify the pointcuts that will need to be created as part of the

finished product. The next two sections will discuss the template file creation for the

pointcuts and advice pieces of each aspect. These template files will be used by the

program to generate the aspects necessary for mitigating SQLI and XSS vulnerabilities.

www.manaraa.com

37

3.2.1 Parsing the XSS and SQL Injection Issues

The first step towards parsing the XML file which contains all of the SQLI and

XSS vulnerabilities is to look at the anatomy of it. As shown in the figure below, each

issue has the following attributes:

www.manaraa.com

38

• Issue – contains identifier values for each of the individual issues.

• Category – specific category for that issue

• Folder – the priority and importance attribute for the issue.

• Kingdom – the domain that the particular issue belongs to.

• Abstract – detailed description of the vulnerability with explanation on how it

can be exploited.

• Friority – priority category given by the Fortify tool.

• Primary – this section contains the information for the vulnerability with

respect to its implementation in the source code.

• Filename – the file the vulnerability is located in from the source code

analyzed.

• Filepath – Location of the source file with respect to the projects main

directory.

• Linestart – The exact line number the vulnerability occurs inside of the

filename specified in the same “Primary” tag.

• Snippet – The piece of code retrieved from the source file where the

vulnerability occurs.

• Source – this tag contains the same attributes as the Primary tag. The data

referred in this tag corresponds to the sink of the vulnerability.

www.manaraa.com

39

Figure 12 - Anatomy of Issue from SCA Result

With the anatomy of the issue tag in the SCA result identified, the next step was to

parse each of these issue nodes and load them into Java objects. The Issue class was

created for this purpose. Each of the source and sinks (i.e. Primary and Source tags)

were treated as separate issues in order to provide full coverage of vulnerabilities. The

Issue class is a plain java object that contained attributes that would be relevant to

creating the final aspects. The object had two constructors, one with no parameters and

one that accepted all attributes as parameters.

www.manaraa.com

40

Figure 13 - Class Diagram DataFileParser and Issue

Now that a container object was created for holding the individual issues, it was

necessary to create a class that did parsing of the file. This class called DataFileParser

accepted the filename of the data file to be parsed. The class makes use of the

SAXParser XML parsing library. When an instance of the SAXParser is given a data file,

it uses the content handler (in this case, the DefaultHandler) object to iterate through

the files individual nodes. As the parser iterates through each element of the XML file,

whenever it encounters the “ISSUE” or “SOURCE” element in the startElement method,

a new Issue object is created. Once the parser is inside one of these elements, it

iterates through the inner elements and these are then captured into the corresponding

properties of the current Issue object inside the “characters” method of the

DefaultHandler. When the closing tag for each issue is encountered in the endElement

method, the current Issue is stored into an ArrayList that will contain all of the Issue

objects created as part of the parsers execution. One important piece to mention is that

the “SOURCE” elements do not have their own abstract definition, category, folder,

kingdom, or priority. This is because this node is always a child node of the “ISSUE”

element and therefore it will inherit these attributes because they would be the same.

www.manaraa.com

41

Figure 14 - How SAX Parser Works [46]

 Once all the “ISSUE” nodes are captured into the ArrayList, the next step is to

separate the XSS and SQL Injection vulnerabilities. In order to achieve this, two more

array lists of type Issue will need to be created that will hold the two different types of

vulnerabilities. The main list will then be iterated and the category attribute of each

Issue object will be checked. If the category is name contains the string “SQL Injection”

or “Cross-Site Scripting”, then that object is put into the corresponding array list. Once

the two lists containing the two types of vulnerabilities are created inside the

DataFileParser object, they can then be retrieved whenever they are necessary by the

rest of the program.

3.2.2 Identifying Pointcuts

 After all of the vulnerabilities have been sorted into individual array lists where

they can be easily accessed by the program, the next step was to identify the pointcuts

the program would need to created. The approach taken to identify the pointcuts was to

manually analyze all of the issues identified by the SCA and record the function calls

www.manaraa.com

42

that were the source of the vulnerability. This was done because it would be impossible

to extract information such as data types of function parameters and the specific

method return types. In the case of Cross-site scripting, these were often functions that

either read the users input or potentially showed the user unvalidated data. For SQL

Injection vulnerabilities, the vulnerabilities were usually located whenever a SQL query

that contained unvalidated data was being executed. This list of potentially vulnerable

functions included vulnerabilities inside of ORM frameworks such as Hibernate in some

applications.

 When these functions were identified, they had to be stored in an XML data file

that could later be easily parsed and read using the above mentioned SAXParser.

There were several pieces of information that needed to be captured for each of these

functions in order to be able to create a successful pointcut:

• name – the name attribute of each function would contain the name of the

pointcut.

• methodName – the name of the method the pointcut will be created for. This

corresponds to the method in the source code identified by the SCA.

• interceptParam – the location of the parameter that needs to be intercepted by

the pointcut. This parameter will contain the data that needs to be checked for

potentially harmful scripts.

• interceptParamType – the data type of the parameter that needs to be

intercepted. This was typically a String or byte array in the case of XSS and SQLI

vulnerabilities.

• param – Each function node will consist of one or more param items. These

represent the parameters that are being captured as part of the pointcut and

advice implementations. Each param item will contain the type, name, location,

and result attributes. The result attribute will be a Boolean that tells whether or

not the current param value is the one to be intercepted at each join point.

When the analysis was completed, the XSS functions captured for pointcuts were

stored in an XML file named xssfunctions.xml and the SQLI functions were captured

www.manaraa.com

43

into a file named sqlInjectionFunctions.xml. The XSS functions file contained seven

different function types that pointcuts would need to be created for and the SQL

Injection functions file contained four. The functions are shown in the figures below.

Figure 15 - SQL Injection Pointcut Functions

 The vulnerabilities for SQL Injection were always associated with one of the

above method executions across all three projects. In most instances where either of

these methods was executed, the string parameter they took contained some sort of

unvalidated data as determined by the source code analysis. This unvalidated data

could allow an attacker to modify the SQL statement being executed or to execute its

own queries that could cripple an application.

www.manaraa.com

44

Figure 16 - XSS Pointcut Functions

 The vulnerabilities identified by the source code analyzer across the three

applications tested fit into the seven functions defined above. Some of these functions

such as getParameter require pointcuts because they take data that could be harmful

directly off of the request object without validating it. Other functions such as print and

println, usually write out directly to a console or a log file. This can be a serious threat if

www.manaraa.com

45

the console logs or log files are ever compromised because this code could possibly be

writing out PII.

 Once the two pointcut function files are identified, they have to be parsed and

stored into individual Function objects for which the Function class was created for. It is

important to remember that multiple function nodes will need to be created for the same

function if it has a different method signature. This class will contain attributes for each

of the values in the function nodes from the XML files. The function parser class,

FunctionsParser, will use the SAX parser and load the individual functions into objects.

Once this is done, the parser will create array lists and put the SQL Injection and XSS

functions into the correct list.

Figure 17 - Function Object and FunctionsParser Class Diagrams

3.2.3 Pointcut Template Creation

 The next step in creating SQLI and XSS mitigation aspects was to define a

template for pointcuts. A pointcut is a program element in AspectJ that identifies join

points in the source code and exposes data from the execution context at those

locations [47]. The pointcuts for this implementation make use of the pointcut designator

and signature named “call” that accepts a parameter “MethodPattern”. Using this

signature allows the pointcut to place a join point on each area where the method name

www.manaraa.com

46

matching the MethodPattern is being called. The SQL Injection pointcut template file is

called sqlInjection.template and the XSS pointcut template file is called xss.template.

Each of the template files would contain placeholders for code to be implemented by the

aspect generator algorithms. The placeholders are surrounded by “<” and “>” characters

in the template files and are defined below:

• pointcut_name – this placeholder will be the individual pointcuts name. The

placeholder will be replaced by the function name from the pointcut function

definition file. For the XSS pointucts, the pointcut name will be prepended by

“xss_” and for the SQLI pointcuts, prepended by “sqlInjection_”.

• pointcut_param – this placeholder will contain the parameter string for the

pointcut. This value will be determined by the interceptParamType attribute of the

Function object. The data type will be followed by the parameter name. If the

pointcut needs to intercept multiple parameters, they will be separated by

commas.

• function_name – the functionName attribute from the Function object will be

placed here because this is the function name from the source code that will

need to be intercepted by the pointcut.

• function_params – this value will be replaced by the data types of the parameters

the function to be intercepted accepts. This value will also come from the

interceptParamType attribute from the Function object.

• within_string – The within string will contain the disjunction of all the file names

that this pointcut will need to be applied to. These file names will be determined

from by the Issue objects from the lists that contain the SQL Injection and XSS

vulnerabilities.

• args_string – This value will contain the parameter names the pointcut gives to

the values that are being intercepted.

www.manaraa.com

47

Figure 18 - Anatomy of an AspectJ Pointcut

Figure 19 - XSS Pointcut Template

Figure 20 - SQL Injection Pointcut Template

With each of the pointcut templates created, the aspect generator will be able to

use the placeholders defined in this section to populate each of them with code or data

that will have a part in mitigating SQL Injection and XSS vulnerabilities. The template

file approach to generating pointcuts provides modularity to the program by taking the

source code generation out of the main program.

3.2.4 Advice Template Creation

 After creating the pointcut template files, the crosscutting behavior that will be

executed at each join point needs to be defined. In AspectJ, this behavior is defined by

the Advice section of the aspect. The advice will run at every join point that the pointcut

picks matches in the application’s source code. However, the code that is executed and

www.manaraa.com

how it is executed depends on the particular advice. The AspectJ AOP implementation

supports three different types of advice. The after advice, has three different

interpretations: After the execution of a join point executed normally, after it throws an

exception, or after it does either one [48]. The before advice is simpler in the sense that

it is only executed before the join point code. The around advice runs in place of the join

point it operates over and since it can have a return value, it must be given a return

type. Inside of the around advice, the original join point can be executed using the

proceed function. This function takes the same arguments as the pointcut and returns

whatever the advice is declared to return in an Object, even if it is a primitive value. The

rest of this section will discuss the effort to create the template files for advices that will

be used to mitigate SQLI and XSS vulnerabilities.

Figure 21 - Anatomy of Around Advice for AspectJ

 After creating template files for the pointcuts that will create join points for the two

types of vulnerabilities the SCA identifies, an advice will also need to be created for

each pointcut. All of the advices will have a common template that will be applied when

creating the final aspects. The advice templates will be part of the pointcut template files

sqlInjection.template and xss.template. The aspects will implement an around advice

that will be used to intercept the parameter that the join point would be executing by

default. The advice template will be illustrated by the figure below:

48

how it is executed depends on the particular advice. The AspectJ AOP implementation

supports three different types of advice. The after advice, has three different

ter the execution of a join point executed normally, after it throws an

exception, or after it does either one [48]. The before advice is simpler in the sense that

it is only executed before the join point code. The around advice runs in place of the join

point it operates over and since it can have a return value, it must be given a return

type. Inside of the around advice, the original join point can be executed using the

proceed function. This function takes the same arguments as the pointcut and returns

whatever the advice is declared to return in an Object, even if it is a primitive value. The

rest of this section will discuss the effort to create the template files for advices that will

be used to mitigate SQLI and XSS vulnerabilities.

Anatomy of Around Advice for AspectJ

After creating template files for the pointcuts that will create join points for the two

types of vulnerabilities the SCA identifies, an advice will also need to be created for

of the advices will have a common template that will be applied when

creating the final aspects. The advice templates will be part of the pointcut template files

sqlInjection.template and xss.template. The aspects will implement an around advice

be used to intercept the parameter that the join point would be executing by

default. The advice template will be illustrated by the figure below:

how it is executed depends on the particular advice. The AspectJ AOP implementation

supports three different types of advice. The after advice, has three different

ter the execution of a join point executed normally, after it throws an

exception, or after it does either one [48]. The before advice is simpler in the sense that

it is only executed before the join point code. The around advice runs in place of the join

point it operates over and since it can have a return value, it must be given a return

type. Inside of the around advice, the original join point can be executed using the

proceed function. This function takes the same arguments as the pointcut and returns

whatever the advice is declared to return in an Object, even if it is a primitive value. The

rest of this section will discuss the effort to create the template files for advices that will

After creating template files for the pointcuts that will create join points for the two

types of vulnerabilities the SCA identifies, an advice will also need to be created for

of the advices will have a common template that will be applied when

creating the final aspects. The advice templates will be part of the pointcut template files

sqlInjection.template and xss.template. The aspects will implement an around advice

be used to intercept the parameter that the join point would be executing by

www.manaraa.com

49

Figure 22 - SQL Injection Aspect Advice Template

pointcut_param – This will be the placeholder for the context arguments mentioned in

the figure above. This parameter will be the intercepted value that will need to be

verified.

1. pointcut_name and pointcut_vars – The name of the pointcut whose join points

will be advised on and the name of the parameters defined in the pointcut

definition that it accepts.

2. The first if-statement checks the fixes map to see if the user has elected to do a

fix at that file and line number that the join point is on. The fixes map will be

described in the aspect generation section. The thisJoinPoint variable contains

reflective information about the current join point being executed and can only be

used in the context of the advice [49]. The variable is being used to get the exact

www.manaraa.com

50

file name and line number where the join point occurs by using the source

locations’ .getFileName() and .getLine() methods.

3. The result_var_type and result_var_name placeholders will be replaced by the

desired result variable type and name. For example, if the join point’s method is

expecting a byte[] instead of a String, the correct value will be replaced from the

functions’ XML definition. For this implementation, the only two types of values

that will be evaluated are byte array and String objects. However, the value can

easily be updated to support other return types for both the XSS and SQLI

validators.

4. If the join point is in the fixes map, then the aspect will make a call to the

doSQLInjectionFix method in the ThesisUtil class. The method will take the

logger object, the unvalidated input the SCA defined as a potential threat, and

the type of fix the user specified. The resulting string will either be a secure value

or contain a validation failure.

5. In the case that the SQL fix encounters an error, the resulting string will contain

the value “VALIDATION_FAILURE” at the beginning of it followed by a more

detailed description such as a stack trace. The logger will then write out this error

to the specified log file where the user will be able to analyze the output.

6. If the result of the doSQLInjectionFix method does not contain an error, the

advice will call the proceed method that will execute the join points code with the

new, secure value. It is important to remember that if the function is not able to fix

the issue but did not encounter an error, it will return the same value that it was

given. The result_string placeholder will be replaced by the value of the result

parameter. In the event that the join point method takes multiple parameters, the

correct value will be replaced by the result.

7. In the event that the pointcut defines a join point that the user chose not to

implement a fix for, the code will execute as normal by using the proceed

function and passing it the parameter values it would have received in its normal

execution flow.

8. Once the advice has done its core logic, the logger will write out to a log file

specifying the location of the join point the advice just executed for and the

www.manaraa.com

51

duration of the execution. This will provide the user with an exact execution time

for each join point that the aspect affects.

The Cross-site scripting prevention aspects advice template is a bit simpler then

the SQL Injection one in the sense that it does not have the chance to return a result

with the “VALIDATION_FAILURE” message. The advice also calls a different method,

doXSSFix() to do the XSS vulnerability mitigation.

www.manaraa.com

52

www.manaraa.com

53

Figure 23 - XSS Aspect Advice Template

3.2.5 Aspect Logging

 Whenever executing an aspect, it will be important to log every single execution

of the join points created by the applications pointcuts in order to provide complete

transparency to the application owners. This program will utilize the Apache Log4J

logging library to track all executions at each join point. Log4j is a java based logging

utility that offers logging at several different levels such as INFO, DEBUG, and ERROR.

The logger can be configured via either properties or xml file. The properties file

approach has an advantage over the XML approach because the logger settings can be

manipulated by changing the file rather than source code. The FileAppender is one of

the appenders available and is used for this implementation because all logging will be

done to external files. The layout used will be the PatternLayout that uses a pattern

string for outputting one line at a time.

www.manaraa.com

54

There will be a logger created for each of the two aspects in the log4j.properties

file. The logger will be instantiated in the constructor for each of the aspects created and

the PropertyConfigurator object will be loaded with the log4j.properties file specified in

the figure below. The log file names will be sqlInjectionAspect.log and xssAspect.log for

the SQL Injection mitigation and XSS mitigation aspects, respectively.

Figure 24 - Log4j properties for the XSS and SQL Injection aspects

3.2.6 Generating the Aspects

 With each of the pointcut and advice template files for both the Cross-site

Scripting and SQL Injection prevention aspects created, the next task was to generate

the aspects themselves. This process required several steps that will be described in

this section. The section will be explaining the functionality of each Java class that was

written to create both of the aspects and also go into detail on any specific libraries that

needed to be leveraged. The three main classes that implement the aspect generation

are called AspectGenerator, AspectBean, XSSAspectGenerator, and

SQLInjectionAspectGenerator.

The AspectGenerator class (shown in diagram below) is the parent class of the

XSSAspectGenerator and SQLInjectionAspectGenerator classes and contains several

methods that are used to help generate the SQLI and XSS prevention aspects.

www.manaraa.com

55

Figure 25 - Aspect Generator and Aspect Bean Class Diagrams

The table below outlines the methods in the AspectGenerator class, each parameter of
the methods, and the overall functionality and implementation of each one.

Method Name Method Parameters Implementation Details

createAdviceMap ArrayList – Issues

String[] Fix Options

Returns - HashMap<String,

String>

The createAdviceMap method will take

the corresponding aspects issues (either

XSS or SQLI) generated from the SCA

and will call the getAdviceForIssue

method for each of these issues. The

map key will be the issue file name and

the line number. The value portion of

the map will be the fix that the user

chose to implement for that particular

issue.

getAdviceForIssue Issue Object i

String[] fixOptions

Returns - String

The getAdviceForIssue method will take

the issue object it is given and ask the

user what kind of fix to implement

based on the options in the fixOptions

array. The user will also be provided

with the issue category, ID, file name,

file line number, priority, and the

abstract from the Fortify SCA report.

For testing purposes, the user can

supply the digit “99” and the program

will choose a random option from the

fixOptions array.

createWithinString ArrayList<Issue> issues The createWithinString method will

www.manaraa.com

56

Returns - String generate the within string to be used

for the <within_string> placeholder in

the pointcut template file. The method

will iterate over the list of issues and

create a disjunction of each filePath

value of each one.

generateAspectBean Function Object f

String withinString

Returns – AspectBean

Object

The generateAspectBean method will

create a new instance of the

AspectBean class and set all of the

necessary attributes. The AspectBean

class will contain the data that will be

used to populate all of the placeholders

in the pointcut and advice templates

identified in previous sections.

createPointcutParam Function Object f

Returns - String

This method will take a Function object

and use its interceptParamType and

interceptParam to create the parameter

for the pointcut definition placeholder.

This return value is the concatenation

of the type and parameter number.

createFunctionParams Function Object f

Returns – String

This method will take the Function

object and use its interceptParam and

interceptParamType attributes to

create the <function_param>

placeholder replacement string. The

method will also iterate through the

individual “param” values of the

function node and construct the string.

The challenge in this method is to

implement logic to create the string

when the parameter being intercepted

is not the first one the function accepts.

createArgsString Function Object f

Returns – String

This method uses the Function object

and creates the parameter string that

will be used to replace the

<args_string> placeholder in the

pointcut template file. The function

objects param list will be iterated and

the string will be constructed. The

args_string value will be used to

reference the parameter that the

pointcut needs to intercept.

createPointcutVarsString Function Object f

Returns – String

This method is similar to

createArgsString.

createResultString Function Object f

Returns – String

This method will iterate through the

parameter list in the Function object

and when it encounters the parameter

www.manaraa.com

57

that is specified as the result, it will

replace its name with the “result” value

that will represent the return value of

the fix method implemented by each

advice. This value will be used to

replace the placeholder <result_string>

generateLogicForAdvice Function Object f

Returns – String

This method will use the method name

on the function object and generate a

comment used for separating out

sections for each advice.

writeAspect String - templateFileName

String – resultFileName

String – poinctutFileName

String[] templateVariables

HashMap<String, String>

adviceMap

ArrayList<AspectBean>

aspectBeans

The writeAspectMethod will generate

the aspect using the AspectBean objects

passed to it. The template file for the

aspect (shown in figure below) will first

be opened and put into a

DataInputStream. The file will be read

line by line and the necessary

placeholders will be replaced. The

<insert_fix_map> placeholder will be

replaced by the users’ suggested fixes

and will be a set of generated put

instructions to populate the aspects

map that will contain all of the fixes.

The <insert_code_here> placeholder

will be replaced by the result of the

writePointcutAdvice method for each of

the AspectBeans provided to the

method. The method will finish by

closing out the resultFileName and also

catch any exceptions that may occur.

writePointcutAdvice DataOutputStream –

aspectDataOutputStream

AspectBean – AspectBean

String – pointcutFileName

String[] templateVariables

FileInputStream

templateInputStream

This method will open the pointcut and

advice template file, iterate over each

line, and apply replacement strings for

each of the placeholders. The

replacement strings will be provided by

the getValueForTemplateVariable

method.

getValueForTemplateVariable String templateVariable

AspectBean aspectBean

String[] templateVariables

Returns – String

This method will return the

replacement string for the desired

templateVariable. The template

variable is the name of the placeholder

in the pointcut and advice template file.

www.manaraa.com

58

package com.aspects;

import com.thesis.aop.util.ThesisUtil;
import com.thesis.aop.util.StopWatch;

import org.apache.log4j.Level;

import org.apache.log4j.Logger;

import org.apache.log4j.PropertyConfigurator;

import java.util.HashMap;

import org.owasp.esapi.errors.IntrusionException;

import org.owasp.esapi.errors.ValidationException;

import net.sf.jsqlparser.JSQLParserException;

public aspect SQLInjectionAspect{
 public HashMap<String, String> fixes = new HashMap<String,

String>();

 Logger logger;

 StopWatch watch;

 public SQLInjectionAspect(){

 PropertyConfigurator.configure("log4j.properties");

 logger = Logger.getLogger("sqlInjectionLogger");

 logger.info("SQL Injection Aspect Created");

 watch = new StopWatch();

 <insert_fix_map>
 }

 <insert_code_here>

}

Figure 26 – SQL Injection Aspect Template

www.manaraa.com

59

package com.aspects;

import com.thesis.aop.util.ThesisUtil;
import com.thesis.aop.util.StopWatch;

import org.apache.log4j.Level;

import org.apache.log4j.Logger;

import org.apache.log4j.PropertyConfigurator;

import java.util.HashMap;

import org.owasp.esapi.errors.IntrusionException;

import org.owasp.esapi.errors.ValidationException;

import net.sf.jsqlparser.JSQLParserException;

public aspect XSSAspect{
 public HashMap<String, String> fixes = new HashMap<String,

String>();

 Logger logger;

 StopWatch watch;

 public XSSAspect(){

 PropertyConfigurator.configure("log4j.properties");

 logger = Logger.getLogger("xssLogger");

 logger.info("XSS Aspect Created!");

 watch = new StopWatch();

 <insert_fix_map>
 }

 <insert_code_here>

}

Figure 27 - Cross-Site Scripting Aspect Template

The XSSAspectGenerator class uses the methods above along with some of its
own to create the XSS mitigation aspect. The class has a constructor that takes an
ArrayList of Function objects that are generated by the FunctionsParser class that
utilizes the SAXParser to retrieve the functions defined in the xssfunctions.xml file and
the list of XSS issues. These two parameters are used to execute the generateAspect
method that creates the XSS Mitigation Aspect. The SQLInjectionAspectGenerator’s
generateAspect method has a similar functionality but instead it uses the array list of
issues that contain the SQLI vulnerabilities, SQL Injection pointcut, and template file.
Each of the methods is shown below to display the file names being passed to the
writeAspect method.

www.manaraa.com

60

 public void generateAspect() throws IOException {

 String withinString = createWithinString(xssIssues);

 adviceMap = createAdviceMap(xssIssues, xssFixOptions);

for (Iterator iterator = functions.iterator();

iterator.hasNext();) {

 Function f = (Function) iterator.next();

 aspectBeans.add(generateAspectBean(f, withinString));

 }

 System.out.println(aspectBeans.size());

 writeAspect("XSSAspect.java.template",

 "XSSAspect.aj",

 "xss.template",

 templateVariables,

 adviceMap,

 aspectBeans);

 }

Figure 28 - generateAspect method from XSSAspectGenerator class

public void generateAspect() throws IOException {

String withinString = createWithinString(sqlInjectionIssues);

adviceMap = createAdviceMap(sqlInjectionIssues,

sqlInjectionFixOptions);

for (Iterator iterator = functions.iterator();
iterator.hasNext();) {

 Function f = (Function) iterator.next();

 aspectBeans.add(generateAspectBean(f, withinString));

 }

 System.out.println(aspectBeans.size());

 writeAspect("SQLInjectionAspect.java.template",

 "SQLInjectionAspect.aj",

 "sqlinjection.template",

 templateVariables,

 adviceMap,

 aspectBeans);
}

Figure 29 - generateAspect method from SQLInjectionAspectGenerator

www.manaraa.com

61

Figure 30 - SQLInjectionAspectGenerator and XSSAspectGenerator Class Diagrams

 This section presented the functionality implemented to generate the XSS and

SQL Injection prevention aspects. The generation of each aspect shares much of the

same code which makes this project very extensible because all of the parameters can

be modified and passed to the generator classes. If the user wanted to add additional

pointcuts to be implemented, they would just need to add entries to the corresponding

functions XML file. The program contains a main class that basically takes the XML

result from the SCA and creates instances of the classes above to generate the two

aspects.

3.3 Algorithms for Vulnerability Mitigation

 This section will discuss the implementation of the logic that applies the SQL

Injection and XSS mitigation. The SQL Injection and XSS mitigation aspects call the

doXSSFix and doSQLInjectionFix methods to execute validation algorithms for a

parameter that is intercepted via the pointcut at each join point that the user specified a

fix for. The ThesisUtil class then takes the parameters passed in by the aspect and calls

the getSolution method that will apply the desired fix on the input string and return a

secure value. The getSolution method will map the desired fix value it receives to the list

of possible fixes and call the necessary method for implementing that particular fix. If

www.manaraa.com

62

the method executed successfully, a valid string will be returned to the advice that was

being executed. The remainder of this section will analyze the libraries and algorithms

used to mitigate SQL Injection and XSS vulnerabilities and how they were implemented.

3.3.1 SQL Injection and ESAPI

 When attempting to mitigate SQL Injection vulnerabilities there are typically three

primary choices that programmers have. The first is to use parameterized queries or

prepared statements. This method makes sure that an attacker is not able to modify the

query that’s being executed. For example, dynamically generated queries could

potentially have a user input that contains a tautology such as “admin OR ‘1’ = ‘1’” that

would always result in the query returning a value. The use of prepared statements

defines the queries’ structure at compile time in order to prevent the attacker from

changing its intent. A less effective solution is to use stored procedures. The stored

procedure approach is similar to the prepared statements but the queries are stored in

the database itself and then called by the application. In order to implement them on

legacy applications it can be a significant level of effort. For example, implementing

parameterized queries would require the rewriting of all modules that contain

dynamically created queries and stored procedures would require the development

team to move all their queries to the database layer.

 The fact that implementing parameterized queries or stored procedures can be a

significant undertaking to incorporate into a legacy application, the proposed approach

is to escape all user supplied input before executing any query that could potentially

contain malicious content. This is typically the less desired alternative since it can leave

an application vulnerable to second level SQL injection attacks but it is the best one

available if rewriting the query execution modules of an application is not an option. The

implementation of this solution will be done by the SQL Injection mitigation aspect that

will apply encoding of the users’ input whenever one of the methods identified by the

Fortify SCA is being executed. The library used to encode the input is the ESAPI

encoder library. The ESAPI encoder library currently supports database encoding for

the Oracle and MySQL databases with support for SQL Server and PostgreSQL being

www.manaraa.com

developed at this time. The ESAPI encoding implementation is illustrated by the figure

below:

Figure 31 - SQL Injection Validator Execution Flow

1. In step one the SQL Injection mitig

will call its doSQLInjectionFix method in the ThesisUtil class. The method will

then execute the getSolution

validated and the users’ desired fix which would either be to encode the query for

MySQL or Oracle.

63

developed at this time. The ESAPI encoding implementation is illustrated by the figure

SQL Injection Validator Execution Flow

In step one the SQL Injection mitigation aspect generated by the previous section

will call its doSQLInjectionFix method in the ThesisUtil class. The method will

execute the getSolution method passing it the query that needs to be

validated and the users’ desired fix which would either be to encode the query for

developed at this time. The ESAPI encoding implementation is illustrated by the figure

ation aspect generated by the previous section

will call its doSQLInjectionFix method in the ThesisUtil class. The method will

method passing it the query that needs to be

validated and the users’ desired fix which would either be to encode the query for

www.manaraa.com

64

Figure 32 - ThesisUtil Diagram and getSolution method logic

2. The SQLInjectionValidator class will first test the incoming query for comments. If

the query has any comments, which could be used maliciously to bypass form

validation, the comment is removed. This piece is done by using a pattern

generated by a regular expression that uses a matcher to determine if the query

has either single or multi line comments. The validator class then sends the

intercepted query to the SQLParser class that will determine what kind of query

was provided and pass it on to the JSQLParser algorithm. The types of queries

that are supported are SELECT, INSERT, DELETE, and UPDATE. The

JSQLParser library is an open source library that uses the visitor pattern to

translate SQL statements using the Java Compiler Compiler (JavaCC) grammar

for SQL [50]. The CCJSqlParserManager class is used to parse a string that

represents an SQL query and it will return an object for the type of query it

determines.

www.manaraa.com

65

Figure 33 - How JavaCC Parses a query [50]

3. The JSQLParser will take the object determined by the CCJSqlParserManager

and use the WhereItemsFinder class to generate a list of SimpleExpression

objects that will be used by the validator class to encode. The WhereItemsFinder

uses the visitor pattern and accepts different types of query objects whether they

are instances of Select, Update, Insert, or Delete. The list of expressions that are

supported by this class consists of:

• GreaterThan – i.e. “10 > 5”

• GreaterThanEquals – i.e. “10 >= 5”

• MinorThan – i.e. “5 < 10”

• MinorThanEquals – i.e. “5 <= 10”

• IsNullExpression – i.e. “name = NULL” or “name != NULL”

• NotEqualsTo – i.e. “name <> ‘Homer’”

• EqualsTo – i.e. “name = ‘Homer’”

www.manaraa.com

66

• Function – i.e. “RAND() > 1”

The visitor pattern implementation also has support for data types such as String,

long, double, Date, TimeStamp, and others. The class will visit each of the

expressions and create SimpleExpression objects that will have the expression’s

left item (typically a column name), operator, right item (typically a parameter),

and valueType of the parameter.

Figure 34 - SQL Parser flow diagram

4. The list of SimpleExpression objects will be returned to the SQL Injection

Validator after each expression has been visited and analyzed. In the event that

an expression contains an operator or function that is not supported, it will return

the default value.

5. Once the potentially malicious query has been parsed and each expression

object is available, the next task is to encode them individually. The encoding

process will consist of iterating through each expression and using either the

MySQL or Oracle codecs to do the encoding using either the escapeMySQL or

www.manaraa.com

67

escapeOracle methods, respectively. The encoding will only be done if the value

type of the expression is a string because there is no reason to encode integers

because they cannot contain malicious scripts or data. As the list of

SimpleExpression’s is iterated, the string replace method will be used to insert

the encoded value in place of the old one. The method executed to do the

escaping will then return an encoded version of the query.

public static String escapeOracle(String s, Logger logger)
 throws JSQLParserException {
 OracleCodec oracle = new OracleCodec();
 String encodedResult = s;

 try {
 List<SimpleExpression> items = SQLParser.getQueryValues(s);
 for (Iterator iterator = items.iterator(); iterator.hasNext();) {
 SimpleExpression simpleExpression =

(SimpleExpression) iterator.next();
 boolean tautology = testTautology(simpleExpression, logger);
 if (tautology) {
 //Tautology Code
 } else if (simpleExpression.valueType == CONSTANT.VALUE_STRING) {
 encodedResult = encodedResult.replace(
 "\"" + simpleExpression.value + "\"",
 "\"" + ESAPI.encoder().encodeForSQL(oracle,
 simpleExpression.value) + "\"");
 encodedResult = encodedResult.replace(
 "'" + simpleExpression.value + "'",
 "'" + ESAPI.encoder().encodeForSQL(oracle,
 simpleExpression.value) + "'");
 }
 }
 } catch (JSQLParserException e) {
 logger.info("ERROR - INVALID QUERY ", e);
 encodedResult = "INVALID QUERY - CHECK LOGS";
 }
 return encodedResult;
}

Figure 35 - Encoding Algorithm for Oracle SQL Encoding

6. Once the possibly malicious query is encoded, it will be returned to the SQL

Mitigation Aspect and executed using the proceed method in the advice. The

parameter of the proceed(encodedString, …) method is now the newly encoded

and presumably safe query. The aspect will log the successful execution of the

SQL validation class with the execution time and type of encoding completed.

www.manaraa.com

68

This section has described the implementation for mitigating SQL Injection

vulnerabilities by using the ESAPI encoder library to validate all the expressions in a

query. This algorithm is designed to only work with SELECT, INSERT, DELETE, and

UPDATE queries. It also analyzes the “where” clauses of each of these and encodes

any expressions within them. In the event that the query parsing fails, the algorithm will

execute the query as is in order to preserve execution flow of the legacy application.

3.3.2 SQL Injection and Tautology Detection

 In the process of mitigating SQL Injection vulnerabilities, it became necessary to

create a tautology detector that would prevent one of the more common attacks from

being executed. The tautology detection is executed for each SimpleExpression in the

database encoding algorithms above. In the event of a tautology being detected in the

query, the expression will be replaced by a value such as “1=2” to that it will no longer

be true. The algorithm for detecting the tautology will be implemented in the SQL

Injection Validator’s testTautology method that will take a SimpleExpression parameter

to test if the object contains a tautology.

 The algorithm will implement the ScriptEngineManager library and set the script

engine to use the JavaScript language. The reason that the JavaScript engine was

chosen is because the language does not require data types to be defined when

evaluating expressions since it is loosely typed. The algorithm will use the expressions

column name, operator, and value attributes to determine if the expression passed in is

a tautology. The expression will be evaluated using the ScriptEngine’s eval method. If

the result of the evaluation returns a true value, then the SQL Injection Validator will

replace the tautology and insert a log entry that a tautology was detected and that it has

been replaced. The testTautologyMethod is implemented as follows:

www.manaraa.com

69

public static boolean testTautology(SimpleExpression exp,
 Logger logger) {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("js");
 boolean resultBool = false;

 try {

 Object result;
 if (exp.getOp().equals("=")) {
 result = engine.eval("'" + exp.getColumnName() + "'"
 + "==" + "'" +
 exp.getValue() + "'");
 } else if (exp.getOp().equals("<>")) {
 result = engine.eval(exp.getColumnName() + "!="
 + exp.getValue());
 } else {
 result = engine.eval(exp.getColumnName() + exp.getOp()
 + exp.getValue());
 }

 result = (Boolean) result;

 Boolean boolResult = new Boolean(result.toString());

 System.out.println(result);
 resultBool = boolResult.booleanValue();

 } catch (ScriptException e) {
 logger.info("ERROR in Tautology Detection", e);
 } finally {

return resultBool;
}

}

Figure 36 - testTautology Method Implementation in SQL Injection Validator

The SQL Injection Validator will then put the expressions’ column name, operation, and

value values to generate a regular expression. This regular expression will then be

applied to the SQL query and replaced by “1=2” that is not a tautology and would

eventually prevent the query from being true every time.

www.manaraa.com

70

if (tautology) {

 logger.info("Obvious Tautology Detected with Left Side: "

 + simpleExpression.getColumnName()

 + " and Right Side: " + simpleExpression.value);

logger.info("Replacing Obvious Tautology With '1=2' in

 order " + "to prevent execution of attack");

 String regex = "(.{0,1}" + simpleExpression.columnName

 + ".{0,1}\\s{0,1000}" + simpleExpression.op +

 "\\s{0,1000}.{0,1}" +

 simpleExpression.value + ".{0,1})";

 encodedResult = encodedResult.replaceAll(regex, " 1=2");

}

Figure 37 - Tautology replacement logic

The tautology detector was created to capture simple tautologies and not allow them to
be executed as part of the SQL query. This was done because many times SQL
Injection attacks such as the one below [51] will contain a tautology in order to bypass
form validation. Since the tautology detector uses the JavaScript engine to evaluate
expressions, there is no support for evaluation SQL functions such as RAND(). The
tautology detector could be extended to support these scenarios but it was outside the
scope of this paper.

Figure 38 - Example of login bypass SQL Injection Attack

3.3.3 XSS Mitigation Algorithms

www.manaraa.com

71

 The difficulty in preventing Cross Site scripting comes from the fact that there‘s

such a large number of attack vectors available. The attacker could potentially steal the

session of a victim, manipulate files on the victims’ computer, record all keystrokes the

victim makes in a web application, and probe a company’s intranet where the victim is

located [52]. Appropriate validation and escaping can address most reflected and stored

XSS vulnerabilities. The algorithms described in this section will make use of the ESAPI

encoder and validator libraries to do the escaping/encoding of malicious data.

 Since most untrusted data comes from places such as URL parameters,

headers, cookies, headers, and form fields that are placed on the HTTP Request object,

it needs to be validated before it is stored anywhere. Stored XSS attacks can be

executed by malicious content that is stored in the user database, web services, or

other locations such as data files. Functions such as HTTPRequest.getParameter and

println were identified by the Fortify SCA as potentially reading or writing data that is not

validated. This papers’ XSS Validation aspect will create pointcuts for these functions

and apply the fix selected by the user for each join point identified by the pointcuts as

illustrated by the diagram below.

Figure 39 - XSS Validator Execution Flow

www.manaraa.com

72

1. In the first step the XSS mitigation aspect’s advice created by the

AspectGenerator will call the doXSSFix method on the ThesisUtil class which will

determine which type of fix to apply to the join point.

2. Depending on the type of fix the user selected for the join point, the XSS

Validator will apply either encoding for the chosen format or a whitelist. The user

has the option to choose from one of these fixes for each join point [53] [54]:

• JavaScript Encoding – Encode data for insertion inside a data value or

function argument in JavaScript.

• CSS Encoding – Encode data for use in CSS content.

• HTML Attribute Encoding – Encode data for use in HTML attributes.

• URL Encoding – Encode for use in a URL.

• Credit Card Validation – Returns a canonicalized and validated credit card

number as a String.

• Alpha Numeric Whitelist – Apply whitelist to input to only accept

alphanumeric strings.

• Alpha Whitelist – Apply whitelist to input to only accept alpha strings.

• Email Whitelist – Apply whitelist to input to only accept an email address

formatted string.

• Zip Code Whitelist – Apply whitelist to input to only accept a zip code

formatted string.

• IP Address Whitelist – Apply whitelist to input to only accept an IP address

formatted string.

• SSN Whitelist – Apply whitelist to input to only accept an SSN formatted

string.

• Custom Whitelist – Apply a custom whitelist via regular expression. The

user will be able to provide a regular expression that will be enforced by

the validator library.

• Do Nothing – Execute join point regularly without doing any extra

validation.

3. In this step the ESAPI encoder library is used to do the necessary encoding on

the string that needs to be validated.

www.manaraa.com

73

4. In this step the ESAPI validator library is used to whitelist a string based on the

provided regular expression. If the string does not match the regular expression

provided, the XSS Validator will throw an exception and then use a pattern

matcher to remove the characters that do not match the provided regex.

5. The last step is for the XSS Validator to return the validated string back to the

aspects’ advice. The advice will then call the proceed method and pass it the

encoded string.

The most difficult aspect of implementing the XSS Validator class is to catch all

possible exceptions that the ESAPI encoder and validator classes can throw. In the

event that an exception occurs, the program must handle it gracefully because the

aspect is not supposed to break application execution flow. This means that if the

aspects’ advice causes an exception, the request is supposed to continue execution as

normal.

3.3.4 SQL Injection Prevention JUnit Testing

 The following section will discuss the JUnit testing code implementation for the

program’s SQLI and XSS Validator code. This is done so that the algorithms created

can be tested thoroughly with the different possible combinations of malicious data that

could be passed to each of the join points that are identified by the aspects’ point cuts.

First the section will discuss the implementation for the SQL Injection Validator and then

the XSS Validators’ test classes. The JUnit testing framework was selected for this task

because it is integrated into the Eclipse IDE which made it simple to generate annotated

stubs for each method in the test classes needed to be created.

 To prove that the ESAPI database encoding and tautology detector are working

as intended, it is necessary to do unit testing for the SQL Validator class and any

classes that utilize it such as the ThesisUtil. To do this, JUnit4 tests are created for the

Oracle and MySQL encoding functions in the SQL Validator. These tests are then

executed with various types of attacks as well as normal inputs and results are

provided.

www.manaraa.com

74

 The first task in implementing unit testing was to create a testing class for the

SQL Injection Validator. The class created is called SQLInjectionValidationTestCase

and it contains a constructor and a testing method with the “@test” annotation for each

of the validators’ methods. The test class will also make use of the Log4j logging library

to print out the results and execution times of each method to a log file named

“unittests.log”. Each of the classes’ methods will use a String attribute defined in the

test class which will represent a database query and execute the corresponding method

in the SQL Validator class. If the result of the encoding contains an error string or the

Validator execution fails, then the error will be logged. At the end of the test methods’

execution the StopWatch classes’ elapsed time will be logged along with the type of test

that was just completed. The method code implementation for the testEscapeMySQL is

shown below.

@Test

public void testEscapeMySQL() throws Exception {

 StopWatch t = new StopWatch();

 logger.info("Running MySQL Test");

 t.start();

 try {

String result =
SQLInjectionValidation.escapeMySQL(query, logger);

 if (result.contains("VALIDATION_FAILURE")) {

 logger.info(result);

 } else

 logger.info("SUCCESS: " + result);

 } catch (Exception e) {

 e.printStackTrace();

 logger.info("Exception in MySQL Test - FAILURE");

 fail("MySQL Test Failed - Exception Thrown");

 } finally {

 t.stop();

 }

 logger.info("Test took: " + t.getElapsedTime() +

" ms");

 logger.info("MySQL Test Finished");

}

Figure 40 - JUnit Test Method for encodeMySQL

www.manaraa.com

75

The XSS Validator code implementation is similar to the SQLI one in the sense that it

uses the same JUnit library, logging functionality, and the same log file. The class

created to do the unit testing for the XSS Validator is called XSSValidationTest and it

implements test methods with annotations for the Validators’ seven methods. Each of

the test methods will try to execute the corresponding escape/validation method and will

log the result. Each of the test methods will handle support for catching a general

exception or a ValidationException that could be thrown by the ESAPI Encoder or

Validator libraries. In the event of an exception, the test will fail, log the error, and print

out the exception’s stack trace as well. An example for the XSS Validators

escapeCustomString method can be found below.

@Test
public void testEscapeCustomString() {
 String returnString = "";
 try {

returnString =
XSSValidation.escapeCustomString("abc123def456ghij-",
"[a-z]+", 300);

 } catch (IntrusionException e) {
 // TODO Auto-generated catch block

logger.info("XSS Test FAIL - EscapeCustomString " +
returnString);

 logger.info("XSS Test FAIL - ", e);
 fail("IntrusionException");
 }
 catch (Exception e){

logger.info("XSS Test FAIL - EscapeCustomString " +
returnString);

 logger.info("XSS Test FAIL - ", e);
 fail("Exception");
 }

logger.info("XSS Test Successful - EscapeCustomString " +
returnString);

}

Figure 41 - JUnit test for XSS Validator escapeCustomString method

 To take these tests a bit further, a JUnit test class was created for the projects’

ThesisUtil class as well. This was done because the SQLI and XSS prevention aspects

call this classes’ doXSSFix and doSQLInjectionFix methods directly which in turn

www.manaraa.com

76

execute the two Validator algorithms. The test class for the ThesisUtil simply has

methods for testing the two different types of fixes using the same logic as the above

implementations and the same logging file.

3.4 Aspect Generation and Deployment

 This section will explain the process that needs to be executed in order to create

the XSS and SQL Injection mitigation aspects. The Eclipse project will be compiled and

exported as an executable jar file. The jar file will be called XSS-SQLI-Mitigator.jar and

can be executed via the java –jar command. When executing the jar file, the user will

also need to specify the Fortify SCA report file in xml format. The remainder of this

section will discuss how to use the aspect generator JAR file and how to deploy the

resulting aspects with an existing or new web application.

3.4.1 Using the Aspect Generator

 The first step to executing the jar file is to open a command prompt or terminal

window and go to the directory where the XSS-SQLI-Mitigator.jar file is located. Next,

the jar file can be executed using the following format:

The <sca_report_xml_file> parameter will be the xml file generated by the Fortify Audit

Workbench program described earlier in the chapter. Once the file is specified and

command executed, the user will be asked to provide the desired fix for each of the

vulnerabilities in the Fortify SCA report. The user will also be given specific information

provided by the source code analyzer to guide them in making their decision for what fix

to implement. This information includes the issue category, issue ID, file name, line

number within that file, priority, and the abstract information. The reason that this

approach was takes is to ensure the least amount of false positives because the user

running this program should be someone with great understanding of the application.

In the case of XSS, the user will be provided the list of 14 options and will put in

the corresponding digit. This requires substantial knowledge of the application and

secure coding, which may be unavoidable but is still a disadvantage. If the user

www.manaraa.com

77

chooses the “CUSTOM” option they will be required to put in a regular expression that

will be applied to whitelist the possibly malicious user input for that vulnerability. The

SQL Injection vulnerabilities will have a list of only 2 possible fixes since the ESAPI

library only supports database encoding for MySQL and Oracle implementations. There

is also an implemented “auto pilot” feature for testing purposes. This can be enabled by

putting in the number 99 as input at any time. This will then choose a fix at random from

the available options.

Figure 42 - Asking user to provide XSS Fix type

Figure 43 - Asking user to provide SQLI fix type

www.manaraa.com

78

 Once the user provides all the fixes, the program will generate the two aspects

that will mitigate SQL Injection and XSS vulnerabilities for the application that the SCA

report was provided for. The aspect files, “XSSAspect.aj” and “SQLInjectionAspect.aj”

will be stored in the same directory as the executed jar file. The next step will be for the

user to take these files and incorporate them into their application.

3.4.2 Deploying Generated Aspects

 After the aspects are generated, they will need to be applied to the build path of

the project that they need to be implemented onto. The user will then need to use the

AspectJ compiler (AJC) to compile the aspects with the projects’ source code. The AJC

will compile the .java and .aj files resulting in compiled bytecode that will have the

“weaved” aspect code [55]. At runtime, the project can use its existing runtime but the

application will now have its class files weaved with the aspect code.

Figure 44 - AspectJ Compiler Execution [55]

 When the user downloads the AspectJ compiler and unzips it to a directory on

their workstation, there are a set of steps that make the compilation process of their

aspects and application much simpler.

1. Keep their existing java project setup as is.

2. Create a separate project directory just for their aspects.

www.manaraa.com

79

3. Use Ant to run the AJC on their existing source code and provide the output

directory separate from the code base.

4. Run the application with the newly generated class files by the AJC.

The AJC can be executed either by the command line or using the AspectJ ANT tasks.

Some of the variables that will need to be set are the ANT_HOME and JAVA_HOME

environment variables. The AspectJ development toolkit (AJDT) also provides thorough

documentation on building an application with the AJC. The Eclipse IDE also has a

plug-in for the AJDT that allows the user to convert a project into an “AspectJ Project”

which allows them to build the project directly from Eclipse.

3.5 Implementation Summary

 This chapter has described the implementation of the SQL Injection and XSS

mitigation aspects from the case study research to the aspect compilation and

execution. For each case study chosen from various online open source repositories a

Fortify source code scan was done to identify the vulnerabilities for the applications’

source code. Once the vulnerabilities were identified they were exported into a readable

XML format that could be utilized by the aspect creator program. This program used

various templates and the users input to create aspects that would mitigate the

vulnerabilities detected by the source code analysis. Several libraries and algorithms

were implemented or created to be used by these aspects to mitigate vulnerabilities.

The ESAPI library from OWASP was leveraged to apply encoding and validation for

potentially malicious data and a tautology detecting algorithm was applied by leveraging

the JSQLParser library. Unit tests were created for each of these algorithms using the

JUnit framework to ensure correct execution and instructions were provided for

executing the applications resulting executable jar file. Finally the chapter provided

information for applying the programs generated aspects to their existing web

application using the AspectJ compiler.

www.manaraa.com

80

Chapter 4 Evaluation

 This chapter will describe the evaluation of the work to create a program that

generates aspects for mitigating SQL Injection and XSS in Java web applications. The

overall desired results are to successfully prevent attacks on vulnerabilities identified by

the Fortify Source Code Analyzer while not having to refactor any legacy source code.

The evaluation will also need to prove that the libraries and algorithms used to eliminate

two of the largest threats to application security are not only functional but also fast.

Another important factor is that the security code is located in a centralized location and

any updates to the security implementation with respect to SQLI and XSS can now be

made in the aspects generated by this tool. Both of the aspects generated by this

program will be evaluated in a live environment because they will be built into and

executed as part of each of the three case study applications chosen. The chapter will

conclude with the reflection of all results and how successful the evaluation was.

4.1 Methods

 The evaluation of the aspects will need to consist of three different but equally

important methods. First it will be important to evaluate all of the algorithms and libraries

that the aspects will invoke at each join point chosen by the user. Then the actual

aspects themselves will be evaluated in terms of how they are incorporated into

different applications. Lastly each of the aspects will be evaluated as part of the

Alfresco, OfBiz, and JadaSite applications. The first method for evaluation is to

determine the functionality of the utility class the aspects call at each join point, the XSS

Validator library, and the SQL Injection Validator library. The evaluation will be done by

creating JUnit4 tests for each of the libraries’ methods and then running a stress test to

see how well the libraries perform. The test for the SQL Injection validator will consist of

running the encoding functionalities for the Oracle and MySQL ESAPI libraries’

encoders and then evaluating the execution time and successful prevention of possible

attacks. The tests will execute twenty-one potentially malicious queries 1000 times

continuously and the results will be recorded into a log file which will then be analyzed.

These queries are stored in the SQLITests.data file under the tests package in the

application. They consist of queries that contain tautologies, comments, and data that

needs to be encoded since it could contain malicious scripts.

www.manaraa.com

81

Figure 45 - Potentially Malicious Queries in Data File

 For each query executed, the log file will contain information such as the

execution time, the type of fix that was implemented, and any changes that were made

to the input. These changes could consist of character encoding, replacing tautologies

detected, and removing comments from the query. In the event of a query being

provided that is not of correct form and cannot be parsed, the original query is returned

with a prepended error message to the join point.

 The method for testing the XSS Validator is a bit more cut and dried than the

logic applied to the SQLI Validator. This is because the user has the ability to apply a

whitelist for each of the potentially malicious pieces of data captured at each join point.

Since the whitelist approach is unforgiving, if an input does not match the whitelist

regular expression, then it is rejected and a blank string is returned. As with the

previous validator, the tests will be executed via JUnit4 that will run a series of potential

inputs for each possible solution that the XSS Validator provides. These inputs consist

of fifty-five different strings that will be passed to the validators’ functions. The strings

originate from the hackers.org XSS page that contains an extensive list of attack vectors

for cross site scripting that has been replicated by the OWASP 2.0 guide [56]. To get an

accurate execution time for each of the method executions, each method will be called

2500 times repeatedly and the results will be exported to a log file for analysis.

www.manaraa.com

82

Figure 46 - Potential XSS attacks from XSS test data file.

 The second method for evaluating the aspects generated will be to prove that the

pointcuts created are actually affecting the locations of files identified by the Fortify

SCA. For each of the selected case studies, the aspects will be weaved into the

necessary source code files and the markers for the advice for each pointcut will then

be compared to the vulnerabilities that the SCA detected. This step being successful will

prove that the aspects will create join points that will be advised on correctly. Once all of

the pointcuts are validated the last step will be to actually execute the application code

and to make sure that the pointcuts are being executed and the correct results are

being computed. Since some of the projects such as OfBiz, contain thousands of join

points, the testing will only consist of some of them being tested due to time constraints.

These time constraints come from the fact that the applications are so robust and that

there are so many different possible paths to each join point, that it would be extremely

time consuming to validate each one.

4.2 Results

 This section will contain the results of the methods applied in the previous

section. All of the stress tests done on the XSS and SQLI Validators will be executed on

a Windows 7 machine with 8GB RAM and i5 Intel processor. The time values captured

www.manaraa.com

83

(in milliseconds) could vary depending on the hardware configuration of the machine

that the tests are executed on.

 For the first set of tests, a list of twenty-one SQL queries was executed fifty times

for both the ESAPI MySQL and Oracle encoders. This list of queries did not exceed 300

characters and it contained different types of malicious content that could result in

attacks ranging from injection of scripts to bypassing login forms.

Figure 47 - List of queries tested for SQLI Validator

After the JUnit4 test was executed, the unitests.log file that contained the results of

each query test was analyzed. The result showed several promising indicators that the

desired results were achieved in both successfully mitigating SQL Injection and doing

so in excellent time. The results of the log file provided information such as removal of

comments from the query and tautology detection and removal. One such example is

on the SQL query “SELECT * FROM Users WHERE ((Username='1' or '1' = '1'))/*') AND

(Password=MD5('password')))”. This query contains a comment that would bypass the

password checking for login validation as well as a tautology ‘1’ = ‘1’ that would also

bypass login. The result in the log file showed the following actions taken:

www.manaraa.com

84

testLogger :: Removing comment from query: "/*') AND

(Password=MD5('password')))" from "SELECT * FROM Users WHERE

((Username='1' or '1' = '1'))/*') AND (Password=MD5('password')))"

testLogger :: Obvious Tautology Detected with Left Side: 1 and Right

Side: 1

testLogger :: Replacing Obvious Tautology With 'x=y' in order to

prevent execution of attack

testLogger :: ThesisUtil Success: result is - SELECT * FROM Users
WHERE ((Username='1' or 1=2))

testLogger :: Test took: 123 ms

testLogger :: testDoSQLInjectionFix Test Finished

As shown by this data, the malicious comment was removed from the query and the

obvious tautology was replaced by something that would not evaluate to true such as

‘1=2’. The decision to replace the tautology was made because it is important to

highlight to the user such events because then they can track them in their database

logging efforts.

 The second aspect of the SQLI Validator execution that was analyzed was the

execution time for each of the query validations done. The data was collected from the

log file and then the max, min, average, median, and mode were all calculated. The

longest execution time was 33ms and the shortest was 1ms. The average query

validation time was only 5.79ms and the most common result, the mode, was 5ms. The

fact that the longest execution period was only 33ms was very encouraging because

even though it was the highest value that only appeared a few times, it still was very

short with respect to the execution time of the average web request. The computation

time for the SQLI validation would most likely improve significantly if it was deployed on

an enterprise level architecture with more robust hardware. Finally, the execution time

for the MySQL and Oracle encoders were fairly identical where the max was the same

at 33ms and min was 1ms.

www.manaraa.com

85

 The evaluation results for testing the XSS Validator contained a considerably

higher amount of information because of the many different fixes that are available to

the user. However, the 13 different categories can be split into two separate categories

that had similar results. The “encoding” category consists of fixes that use the ESAPI

encoder library which simply encodes the users’ input characters. The second and

generally more involved category is “whitelist”, where the users input is compared to a

regular expression string. The results for both can be found in the table below:

0

5

10

15

20

25

30

35

MySQL Oracle

E
x

e
cu

ti
o

n
 T

im
e

 (
m

s)

Encoding Type

SQL Validator Execution Time

1st Quartile

Min

Median

Max

3rd Quartile

www.manaraa.com

86

Validation Type Average (ms) Max (ms) Min (ms) Median (ms)

HTML Attribute Encode 0.04 13 0 0

Email Whitelist 3.1 197 0 1

Alpha Numeric Whitelist 3.3 199 0 1

URL Encoding 0.09 6 0 0

SSN Whitelist 3.06 199 0 1

Zip Code Whitelist 3.22 196 0 1

Credit Card Validation 4.53 229 0 1

HTML Encoding 0.05 11 0 0

CSS Encoding 0.03 1 0 0

Alpha Whitelist 3.3 209 0 1

Javascript Encoding 0.08 47 0 0

IP Address Whitelist 3.08 198 0 1

As mentioned above, the items in the category “encoding” had significantly lower

average and maximum execution times. The lowest of these was for CSS encoding

which only took a third of a millisecond and the highest was 47ms for the Javascript

encoding of a string. The longest execution time belonged to the credit card validation

which took almost a quarter of a second at 229ms. The reason that this function takes

so long to execute is because the ESAPI validator compares the strings’ value to see if

it matches several different credit card patterns. There are several reasons for

explaining the higher duration of the whitelist methods’ execution times. Each time the

user requests to do whitelist validation of the input the program has to instantiate and

compile a Pattern object for the corresponding regular expression. Then if the input

string provided does not match the regular expression using the Matcher object, the

sections of the string that do not match are replaced by an empty value. This approach

ensures that the input provided is completely valid per the users’ request when they

were asked to select a fix when the aspect generator program was executed.

 The second portion of the evaluation is to integrate the SQLI and XSS aspects

into the Alfresco, OfBiz, and JadaSite applications. The programs will be checked out

from their respective SVN and CVS repositories and then imported as an eclipse

project. For each project an “aspects” package will be created and configured into the

build path of the application. The build path will also be configured to include the

www.manaraa.com

87

libraries and compiled class folder of the ThesisUtil, XSS Validator, SQLI Validator, and

any other dependent classes. Once the build path is configured, each project will be

built and the results will be analyzed. The analysis will consist of matching the list of

vulnerabilities identified by the Fortify SCA with the markers for the advices identified by

the AJDT compilation. The criteria for a successful evaluation will be the determination

of each vulnerability identified having a corresponding join point for each of the solutions

chosen by the user.

 For the JadaSite application, the XSS and SQL Injection aspects had 12 and 109

vulnerabilities identified, respectively. For the SQL Injection aspect created, the pointcut

that identified markers for the largest number of items was for the createQuery function

with a total of 125. Although the SCA only identified a total of 110 SQL Injection

vulnerabilities, the advice would only execute the SQLI Validator if the join point was on

the exact line number the SCA specified. The executeQuery and createSQLQuery

pointcuts both had only a single join point identified and the executeUpdate only had

four. Since the JadaSite project did not use prepared statements, the pointcuts created

for those had no advice markers and would therefore never be executed since it is not

woven into any of the source code at compile time.

Figure 48 - Example of XSS Aspect fix map

The XSS Aspect for the JadaSite application only had 12 fixes identified in its fix

map. Just like in the SQLI Aspect, the pointcuts identified more join points then there

were fixes and the same logic applies in the sense that only join points where fixes are

www.manaraa.com

88

identified will be executed. The pointcut for the println function identified the most join

points at 22 while the write byte array function only had one. Since the JadaSite project

did not utilize the regular print, send error, or set attribute functions, these pointcuts did

not have any markers and were therefore not woven into any parts of the projects’

source code.

JadaSite XSS Aspect 12 22

JadaSite SQLI Aspect 109 131

OfBiz XSS Aspect 130 380

OfBiz SQLI Aspect 152 30

Alfresco XSS Aspect 12 22

Alfresco SQLI Aspect 13 13

 The remainder of the results for each of the projects and corresponding aspects

are displayed in the table above. To make sense between the discrepancies between

the amounts of vulnerabilities identified by the SCA and the number of join points

identified by the aspects, we have to analyze the difference between a sources and sink

issue. Many times the Fortify SCA will identify multiple issues for the same source or

sink of the vulnerability. An example is when a class invokes a method that contains the

same vulnerability in multiple places. This is primarily evident in the SQLI Aspect of the

OfBiz project where the number of vulnerabilities is 152 and only 30 join points were

identified. In the event where the number of join points far exceeds the amount of

vulnerabilities such as in the OfBiz XSS Aspect, this will not hinder performance

because the advice has logic implemented that will only execute the XSS Validator if the

join point location exists in the fix map.

 The third and final part of the evaluation process was to test the aspects with all

three case study applications running in a live environment. The difficulty of this

validation step comes from the fact that each of the vulnerabilities identified by the SCA

are scattered throughout the application and the path to each of these can be very

www.manaraa.com

89

difficult to reach since all the projects are enterprise level applications. Therefore the

chosen approach is to only evaluate the execution of join points that are easily

reachable by a typical user of the application and then analyze their execution process.

When doing this step, the aspect generation program must either be extracted into a

JAR or included into the build path of each of the applications so that the XSS and SQLI

Validators as well as any required libraries such as the JSQL Parser can be referenced.

 For the OfBiz project a total of 22 join points were evaluated and the execution

time and result were analyzed. Each join point was able to execute successfully and

with similar time to the JUnit4 execution data explained above. Out of the 22 join points

evaluated, 16 were possible XSS vulnerabilities with whitelist validation and 6 applied

SQL encoding. Since the Alfresco project really consists of multiple projects with

different contexts, the “repository” project was the one chosen for execution since it

contained a fairly large portion of the vulnerabilities identified. This project contained 11

and 4 of the SQLI and XSS vulnerabilities, respectively. Both of the aspects executed

as expected except one in the SQLI category where the query, doing table creation,

was not supported by the JSQL Parser. However, even though the query was not

supported, the program still executed as normal because the SQLI Validator returns the

original value if query validation fails. The JadaSite project had no issue executing any

of its 8 XSS and 14 SQLI join points that were tested.

4.3 Evaluation Conclusion

The evaluation of this project showed a successful implementation of the XSS

and SQLI prevention aspects in three case study Java web applications. The first

section of this chapter evaluated the execution time of the Validators that were created

to mitigate SQL Injection and Cross-site scripting vulnerabilities. The results of this

section proved that the application of mitigation algorithms on users input and query

execution was very cheap in terms of length of execution and performance impact. The

second section explained how the aspects generated were applied to each of the three

case studies and how the join points identified by the AspectJ compiler correspond to

the vulnerabilities identified by the Fortify SCA. This section determine that even in the

event where the number of vulnerabilities was greater or less then the number of join

www.manaraa.com

90

points, each potentially malicious threat requested from the user was still handled. The

third and final part of the evaluation was to execute the case studies and see the

aspects’ weaved code results. Even though it wasn’t possible to test all vulnerabilities

identified, the fact that the ones that were tested executed successfully is confidence

enough that the rest would work as well when the corresponding join point was

encountered.

Chapter 5 Conclusion and Future Works

5.1 Concluding Summary

Two of the largest threats to web application security are SQL Injection and

Cross-site scripting. Thousands of web applications process personally identifiable

information such as SSNs, credit card numbers, and addresses every day and many of

these have a significant number of SQLI and XSS vulnerabilities that can be exploited

by a malicious user. The SQLI and XSS mitigation aspect generator described in this

paper creates aspects that prevent malicious content from being executed or stored in

Java web applications using the results of the Fortify Source Code Analyzer and the

users’ choice of validation to implement. The most significant feature of the approach

identified is the use of the Aspect Oriented Programming paradigm that allows the code

that mitigates vulnerabilities to be applied to existing applications without the need to

modify potentially fragile source code.

 The approach taken was to use the AOP paradigm to execute Validator classes

that would be applied at the locations of the vulnerabilities identified by Fortify SCA.

This modular approach to implementing security allows the developers to use

separation of concerns where they can apply any future security algorithms to a single

location. When the user executes the aspect generator, they will be given a choice of

fixes to implement for each of the vulnerabilities detected by the SCA. The two resulting

aspects, one for XSS and the other for SQLi, contain pointcuts and advices that will

isolate join points throughout the applications’ source code and weave in the necessary

code that will ensure the mitigation of these vulnerabilities.

www.manaraa.com

91

 The XSS Aspect will handle the mitigation of Cross-site scripting vulnerabilities.

The validation done will consist of either whitelisting or encoding of user input at the

different join points identified by each pointcut. The user will have the capability to

provide their own whitelist regular expression in the event that the default list of options

is insufficient. The SQL Injection Aspect consists of advices that apply encoding to

either Oracle or MySQL queries. The SQLI Validator also contains a tautology detector

and comment parser that is used to thwart many malicious queries from being

executed. The pointcuts for both aspects are defined in XML files that contain functions

that need to be intercepted. These functions are created manually by analyzing the

Fortify SCA report and identifying the code that is listed as having vulnerabilities. The

aspects are then generated using their respective template files that contain

placeholders that are replaced by values identified by the functions to be intercepted as

well as their parameters. One of the restrictions of this approach is that the user

executed aspect generator does not have the capability to expand the defined list of

functions although it can be done by manually changing the XML configuration and

regenerating the JAR file.

In order to evaluate the success of the aspects created, three enterprise level

open source Java web applications were chosen as case studies. These applications

are from the E-Commerce, content management, ERP, and document management

categories. Source code analysis was done on all three applications and the results

were given to the aspect generator which provided security mitigation aspects. The

evaluation consisted of doing extensive testing using the JUnit testing framework,

integration of the aspects into each project, and testing the mitigation aspects as part of

the running applications. The evaluation proved that each of the aspects not only

mitigate XSS and SQLI attacks but also do it very efficiently with most execution times

being less than 10 milliseconds. The low execution time of the aspects’ at each join

point is significant because it is very important that the introduction of the security code

did not heavily affect the execution time of the original applications.

In conclusion, this thesis describes the implementation of a program that

generates XSS and SQLI mitigation aspects that can be applied to existing web

www.manaraa.com

92

applications based on static source code analysis. The main advantage of this approach

compared to others evaluated is the fact that the use of the AOP paradigm does not

require any modification to the legacy code and provides a centralized location for the

applications’ security logic. The evaluation of the generated aspects with three

enterprise level projects provides a great level of confidence that the approach is both

valid and effective at mitigating some of the most prevalent threats to web application

security.

5.2 Future Works
There are a number of features and improvements that can be made to the

aspect generator program that would make it a more effective security tool and provide

a better overall user experience. The future works section of this paper will be broken

down into four sections that will describe these updates, the reason behind each one,

and how they would make the tool a better product. The first of these is to extend the

program to support mitigation of more than just two types of vulnerabilities. The first

step would be to implement aspect generation and input validation for the rest of the

OWASP top 10 vulnerabilities as well as implement support for other types of source

code analysis tools. The second step would be to make the pointcut and advice

generation more extensible. This would allow the user running the aspect generator

program to create customized pointcuts, advice templates, and have more control over

what fixes to implement for the vulnerabilities identified. The third plan for future work is

to create a Graphical User Interface (GUI) for the aspect generator program. This would

enhance the users’ experience using the aspect generator program by making it easier

to use and more intuitive. The fourth improvement is the largest and most complex to

implement. The desired result will be to extend the concept of this paper to other

programming languages.

The first step would consist of identifying the other 8 top security vulnerabilities in

web applications. For each additional type of potential attack to be handled by the

aspect generator, the application would have to be extended to parse the corresponding

input file from the source code analyzer. Template files would have to be created for

each new aspect to be generated for both the pointcut and advice sections and

www.manaraa.com

93

functions to intercept would have to be identified and put into corresponding XML files.

Once the template files are completed, algorithms would need to be written to

implement the fixes that are identified by the source code analyzer. These algorithms

should leverage any existing and proven methods for handling these various types of

attack but this time they would be executed from the aspect. The second part of this first

step would be to make the aspect generator compatible with more than just the Fortify

source code analyzer. The goal would be to allow the user to provide a parameter to the

program that would tell it what kind of SCA was used to generate the data file and the

program should then use the corresponding data file parser. For the first set of updates,

the program should be extended to support two more types of source code analysis

tools.

The second step would be to allow the user to have greater control over what

pointcuts are created in the aspect generation process. Currently the pointcuts are

generated by the function definitions inside the xssfunctions and sqlInjectionFunctions

XML files. The program will need to be modified to allow the user to create custom

function entries for these files. The user will need to provide all the function data and

parameters identified above and the entry will then be added to the XML file. Once the

aspect generation is initialized, the users’ entries will have pointcuts created for them for

each aspect they provided additional function nodes for. The user would also need to

have the ability to create all new aspect and pointcut templates that they could be used

for the aspect generation instead of the standard ones. This would allow the user to use

custom logging functionality, call other validation libraries, and possibly implement

different advices such as before and after for each of their defined pointcuts. This

update to the aspect generator would benefit the user because it would allow them to

customize functionality of the aspect while still ensuring security. To make sure of this,

certain parts of the aspects’ template would have to remain the same.

The third enhancement to be implemented as part of the future works would be

to create a GUI for the security aspect generator program. The GUI will most likely be a

Java Swing application or an eclipse IDE plugin that would allow the user to interact

with the program using the mouse and keyboard. The user would have controls such as

www.manaraa.com

94

buttons, dropdowns, lists, and text boxes for various actions they can perform. The user

would be able to choose what fixes to implement from a drop down list and a text box to

insert a custom regular expression in the case of a XSS whitelist fix. They would also

have input fields for doing things such as extending the functions XML file and the

pointcut and aspect template files defined above. The user interface would also have

input validation which us currently non-existent in the command line implementation.

The effort to extend the program created to support multiple languages will be

the most difficult because of the varying implementation of the aspect oriented

programming paradigm. This is particularly different in interpreted programming

languages such as PHP, Python, and Ruby. The first challenge to overcome would be

to find a suitable AOP implementation for each new programming language that needs

to be supported. Since the implementation for each language would be different,

template files, function definitions, and libraries for mitigating vulnerabilities would need

to be created for each one. The data used for the aspect generator for each of the

newly supported language will need to come from a source code analyzer that has the

ability to analyze projects of different programming languages. The initial phase of

extending the security aspect generator for extra languages will be to provide support

for PHP since there is such a large amount of web applications created using it. The

challenge for supporting PHP will be to find an AOP implementation that does not

require pre compilation of the files to weave in the necessary code.

With the above improvements and features added, the security aspect generator

program will be much more robust and have a broader appeal to the development

community. The program will also be available on a website such as GitHub where

members of the open source programming community will be able to make additional

feature requests as well as report any bugs they encounter.

www.manaraa.com

95

Appendices

Appendix A SQL Injection Functions Definition XML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<functions type="xml">
 <function name="createSQLQueryFunction">
 <methodName>createSQLQuery</methodName>
 <param type="String" name="param1" location="1" result="true" />
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

 <function name="executeUpdateFunction">
 <methodName>executeUpdate</methodName>
 <param type="String" name="param1" location="1" result="true" />
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

 <function name="executeQueryFunction">
 <methodName>executeQuery</methodName>
 <param type="String" name="param1" location="1" result="true" />
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

 <function name="createQueryFunction">
 <methodName>createQuery</methodName>
 <param type="String" name="param1" location="1" result="true" />
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

 <function name="prepareStatementFunction">
 <methodName>prepareStatement</methodName>
 <param type="String" name="param1" location="1" result="true"/>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

 <function name="prepareStatementFunctionMultiParam">
 <methodName>prepareStatement</methodName>
 <param type="String" name="param1" location="1" result="true"/>
 <param type="int" name="param2" location="2" result="false"/>
 <param type="int" name="param3" location="3" result="false"/>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

 <function name="prepareStatementFunctionTwoParamIntArray">
 <methodName>prepareStatement</methodName>
 <param type="String" name="param1" location="1" result="true"/>
 <param type="int" name="param2" location="2" result="false"/>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

www.manaraa.com

96

 <function name="prepareStatementFunctionTwoParam">
 <methodName>prepareStatement</methodName>
 <param type="String" name="param1" location="1" result="true"/>
 <param type="int[]" name="param2" location="2" result="false"/>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

 <function name="generalExecuteFunction">
 <methodName>execute</methodName>
 <param type="String" name="param1" location="1" result="true"/>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 </function>

</functions>

Appendix B XSS Functions Definition XML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<functions type="xml">
 <function name="writeFunction">
 <methodName>write</methodName>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 <param type="String" name="param1" location="1" result="true" />
 </function>

 <function name="writeByteArrayFunction">
 <methodName>write</methodName>
 <interceptParam>1</interceptParam>
 <interceptParamType>byte[]</interceptParamType>
 <param type="byte[]" name="param1" location="1" result="true" />
 </function>

 <function name="printFunction">
 <methodName>print</methodName>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 <param type="String" name="param1" location="1" result="true" />
 </function>

 <function name="printlnFunction">
 <methodName>println</methodName>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 <param type="String" name="param1" location="1" result="true" />
 </function>

 <function name="sendErrorFunction">
 <methodName>sendError</methodName>
 <interceptParam>2</interceptParam>
 <interceptParamType>String</interceptParamType>
 <param type="String" name="param1" location="1" result="true" />
 </function>

www.manaraa.com

97

 <function name="getParameterFunction">
 <methodName>getParameter</methodName>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 <param type="String" name="param1" location="1" result="true" />
 </function>

 <function name="setAttributeFunction">
 <methodName>setAttribute</methodName>
 <interceptParam>2</interceptParam>
 <interceptParamType>String</interceptParamType>
 <param type="String" name="param1" location="1" result="true" />
 </function>

 <function name="writeByteArrayThreeParam">
 <methodName>write</methodName>
 <interceptParam>1</interceptParam>
 <interceptParamType>String</interceptParamType>
 <param type="byte[]" name="param1" location="1" result="true" />
 <param type="String" name="param2" location="1" result="false" />
 <param type="String" name="param3" location="1" result="false" />
 </function>
</functions>

Appendix C XSS Aspect Generated

package com.aspects;
import com.thesis.aop.util.ThesisUtil;
import com.thesis.aop.util.StopWatch;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;
import java.util.HashMap;
import org.owasp.esapi.errors.IntrusionException;
import org.owasp.esapi.errors.ValidationException;
import net.sf.jsqlparser.JSQLParserException;

public aspect XSSAspect{
 public HashMap<String, String> fixes = new HashMap<String, String>();
 public HashMap<String, String> customRegex =
 new HashMap<String, String>();
 Logger logger;
 StopWatch watch;

 public XSSAspect(){
 PropertyConfigurator.configure("log4j.properties");
 logger = Logger.getLogger("xssLogger");
 logger.info("XSS Aspect Created!");
 watch = new StopWatch();

 fixes.put("AVMWebappLoader.java_1451", "CSS-ENCODING");
 fixes.put("TestDeploymentTransportTransformer.java_73",
 "SSN-WHITELIST");
 fixes.put("BaseServlet.java_232", "CSS-ENCODING");
 fixes.put("BaseServlet.java_254", "ZIP-CODE-WHITELIST");
 fixes.put("AVMRemoteTransportService.java_411",

www.manaraa.com

98

 "SSN-WHITELIST");
 fixes.put("GetMethod.java_431", "ZIP-CODE-WHITELIST");
 fixes.put("BaseServlet.java_283", "URL-ENCODING");
 fixes.put("WebDAV.java_447", "CSS-ENCODING");
 fixes.put("BaseServlet.java_284", "CSS-ENCODING");
 fixes.put("RepoRemoteTransportService.java_459",
 "JAVASCRIPT-ENCODING");
 fixes.put("SampleEncryptionTransformer.java_206",
 "CSS-ENCODING");
 fixes.put("GetMethod.java_405", "CSS-ENCODING");

 }

 pointcut xss_writeFunction(String param1) :
 call(* *.write(String)) &&
 (within(*..BaseServlet) ||
 within(*..AVMWebappLoader) ||
 within(*..AVMRemoteTransportService) ||
 within(*..RepoRemoteTransportService) ||
 within(*..WebDAV) ||
 within(*..GetMethod) ||
 within(*..SampleEncryptionTransformer) ||
 within(*..TestDeploymentTransportTransformer)) &&
 args(param1);

 Object around(String param1) : xss_writeFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){

 try{
 String result = ThesisUtil.doXSSFix(param1,
 fixes.get(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()));
 return proceed(result);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine() + "," +
 watch.getElapsedTime());

 return proceed(param1);
 }

 pointcut xss_writeByteArrayFunction(byte[] param1) :
 call(* *.write(byte[])) &&
 (within(*..BaseServlet) ||
 within(*..AVMWebappLoader) ||
 within(*..AVMRemoteTransportService) ||

www.manaraa.com

99

 within(*..RepoRemoteTransportService) ||
 within(*..WebDAV) ||
 within(*..GetMethod) ||
 within(*..SampleEncryptionTransformer) ||
 within(*..TestDeploymentTransportTransformer)) &&
 args(param1);

 Object around(byte[] param1) : xss_writeByteArrayFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){

 try{
 byte[] result = ThesisUtil.doXSSFix(param1, fixes.get(
 thisJoinPoint.getSourceLocation().getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 return proceed(result);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine() +
 "," + watch.getElapsedTime());

 return proceed(param1);
 }

 pointcut xss_printFunction(String param1) :
 call(* *.print(String)) &&
 (within(*..BaseServlet) ||
 within(*..AVMWebappLoader) ||
 within(*..AVMRemoteTransportService) ||
 within(*..RepoRemoteTransportService) ||
 within(*..WebDAV) ||
 within(*..GetMethod) ||
 within(*..SampleEncryptionTransformer) ||
 within(*..TestDeploymentTransportTransformer)) &&
 args(param1);

 Object around(String param1) : xss_printFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){

 try{
 String result = ThesisUtil.doXSSFix(param1,
 fixes.get(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()));
 return proceed(result);
 } catch (Exception e) {
 // TODO Auto-generated catch block

www.manaraa.com

100

 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()

+ "_" +
thisJoinPoint.getSourceLocation().getLine() + "," +
watch.getElapsedTime());

 return proceed(param1);
 }

 pointcut xss_printlnFunction(String param1) :
 call(* *.println(String)) &&
 (within(*..BaseServlet) ||
 within(*..AVMWebappLoader) ||
 within(*..AVMRemoteTransportService) ||
 within(*..RepoRemoteTransportService) ||
 within(*..WebDAV) ||
 within(*..GetMethod) ||
 within(*..SampleEncryptionTransformer) ||
 within(*..TestDeploymentTransportTransformer)) &&
 args(param1);

 Object around(String param1) : xss_printlnFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){

 try{
 String result = ThesisUtil.doXSSFix(param1,
 fixes.get(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()));
 return proceed(result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()
 + "," + watch.getElapsedTime());

 return proceed(param1);
 }

 pointcut xss_sendErrorFunction(String param1) :
 call(* *.sendError(String)) &&
 (within(*..BaseServlet) ||
 within(*..AVMWebappLoader) ||
 within(*..AVMRemoteTransportService) ||

www.manaraa.com

101

 within(*..RepoRemoteTransportService) ||
 within(*..WebDAV) ||
 within(*..GetMethod) ||
 within(*..SampleEncryptionTransformer) ||
 within(*..TestDeploymentTransportTransformer)) &&
 args(param1);

 Object around(String param1) : xss_sendErrorFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){

 try{
 String result = ThesisUtil.doXSSFix(param1,
 fixes.get(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()));
 return proceed(result);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine() + ","
 + watch.getElapsedTime());

 return proceed(param1);
 }

 pointcut xss_getParameterFunction(String param1) :
 call(* *.getParameter(String)) &&
 (within(*..BaseServlet) ||
 within(*..AVMWebappLoader) ||
 within(*..AVMRemoteTransportService) ||
 within(*..RepoRemoteTransportService) ||
 within(*..WebDAV) ||
 within(*..GetMethod) ||
 within(*..SampleEncryptionTransformer) ||
 within(*..TestDeploymentTransportTransformer)) &&
 args(param1);

 Object around(String param1) : xss_getParameterFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){

 try{
 String result = ThesisUtil.doXSSFix(param1, fixes.get(
 thisJoinPoint.getSourceLocation().getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 return proceed(result);
 } catch (Exception e) {
 e.printStackTrace();

www.manaraa.com

102

 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine() + ","
 + watch.getElapsedTime());

 return proceed(param1);
 }

 pointcut xss_setAttributeFunction(String param1) :
 call(* *.setAttribute(String)) &&
 (within(*..BaseServlet) ||
 within(*..AVMWebappLoader) ||
 within(*..AVMRemoteTransportService) ||
 within(*..RepoRemoteTransportService) ||
 within(*..WebDAV) ||
 within(*..GetMethod) ||
 within(*..SampleEncryptionTransformer) ||
 within(*..TestDeploymentTransportTransformer)) &&
 args(param1);

 Object around(String param1) : xss_setAttributeFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" +
 thisJoinPoint.getSourceLocation().getLine())){

 try{
 String result = ThesisUtil.doXSSFix(param1,
 fixes.get(
 thisJoinPoint.getSourceLocation().getFileName()
 + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 return proceed(result);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().
 getFileName()
 + "_" + thisJoinPoint.getSourceLocation().
 getLine()
 + "," + watch.getElapsedTime());

 return proceed(param1);
 }

 pointcut xss_writeByteArrayThreeParam(byte[] param1,
 String param2, String param3) :

www.manaraa.com

103

 call(* *.write(byte[], String, String)) &&
 (within(*..BaseServlet) ||
 within(*..AVMWebappLoader) ||
 within(*..AVMRemoteTransportService) ||
 within(*..RepoRemoteTransportService) ||
 within(*..WebDAV) ||
 within(*..GetMethod) ||
 within(*..SampleEncryptionTransformer) ||
 within(*..TestDeploymentTransportTransformer)) &&
 args(param1, param2, param3);

 Object around(byte[] param1, String param2, String param3) :
 xss_writeByteArrayThreeParam(param1, param2, param3){
 watch.start();
 if(fixes.containsKey(
 thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){

 try{
 byte[] result = ThesisUtil.doXSSFix(param1,
 fixes.get(
 thisJoinPoint.getSourceLocation().getFileName()
 + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 return proceed(result, param2, param3);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1, param2, param3);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().
 getLine() + ","
 + watch.getElapsedTime());

 return proceed(param1, param2, param3);
 }
}

Appendix D SQL Injection Aspect Generated

package com.aspects;
import com.thesis.aop.util.ThesisUtil;
import com.thesis.aop.util.StopWatch;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;
import java.util.HashMap;
import org.owasp.esapi.errors.IntrusionException;
import org.owasp.esapi.errors.ValidationException;
import net.sf.jsqlparser.JSQLParserException;

www.manaraa.com

104

public aspect SQLInjectionAspect{
 public HashMap<String, String> fixes =
 new HashMap<String, String>();
 Logger logger;
 StopWatch watch;

 public SQLInjectionAspect(){
 PropertyConfigurator.configure("log4j.properties");
 logger = Logger.getLogger("sqlInjectionLogger");
 logger.info("SQL Injection Aspect Created");
 watch = new StopWatch();

 fixes.put("SchemaBootstrap.java_1896", "SQL-ENCODE-MYSQL");
 fixes.put("SchemaBootstrap.java_605", "SQL-ENCODE-ORACLE");
 fixes.put("SchemaBootstrap.java_1043", "SQL-ENCODE-ORACLE");
 fixes.put("SchemaBootstrap.java_1876", "SQL-ENCODE-MYSQL");
 fixes.put("SchemaBootstrap.java_1917", "SQL-ENCODE-MYSQL");
 fixes.put("SchemaBootstrap.java_1271", "SQL-ENCODE-ORACLE");
 fixes.put("SchemaBootstrap.java_1883", "SQL-ENCODE-ORACLE");
 fixes.put("SchemaBootstrap.java_1931", "SQL-ENCODE-ORACLE");
 fixes.put("SchemaBootstrap.java_1890", "SQL-ENCODE-MYSQL");
 fixes.put("SchemaBootstrap.java_1266", "SQL-ENCODE-MYSQL");
 fixes.put("SchemaBootstrap.java_1910", "SQL-ENCODE-MYSQL");
 fixes.put("SchemaBootstrap.java_1903", "SQL-ENCODE-MYSQL");
 fixes.put("SchemaBootstrap.java_1924", "SQL-ENCODE-ORACLE");
 }

 pointcut sqlInjection_createSQLQueryFunction(String param1) :
 call(* *.createSQLQuery(String)) &&
 (within(*..SchemaBootstrap)) &&
 args(param1);

 Object around(String param1) :
 sqlInjection_createSQLQueryFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" +
 thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,
 param1, fixes.get(
 thisJoinPoint.getSourceLocation().getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }
 else{
 return proceed(result);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }

www.manaraa.com

105

 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" +
 thisJoinPoint.getSourceLocation().getLine() +
 "," + watch.getElapsedTime());
 return proceed(param1);
 }

 pointcut sqlInjection_executeUpdateFunction(String param1) :
 call(* *.executeUpdate(String)) &&
 (within(*..SchemaBootstrap)) &&
 args(param1);

 Object around(String param1) :
 sqlInjection_executeUpdateFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,
 param1, fixes.get(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }
 else{
 return proceed(result);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()
 + "," + watch.getElapsedTime());
 return proceed(param1);
 }

 pointcut sqlInjection_executeQueryFunction(String param1) :
 call(* *.executeQuery(String)) &&
 (within(*..SchemaBootstrap)) &&
 args(param1);

 Object around(String param1) :
 sqlInjection_executeQueryFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,

www.manaraa.com

106

 param1, fixes.get(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }
 else{
 return proceed(result);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()
 + "," + watch.getElapsedTime());
 return proceed(param1);
 }

 pointcut sqlInjection_createQueryFunction(String param1) :
 call(* *.createQuery(String)) &&
 (within(*..SchemaBootstrap)) &&
 args(param1);

 Object around(String param1) :
 sqlInjection_createQueryFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,
 param1, fixes.get(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }
 else{
 return proceed(result);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()
 + "," + watch.getElapsedTime());
 return proceed(param1);
 }

www.manaraa.com

107

 pointcut sqlInjection_prepareStatementFunction(String param1) :
 call(* *.prepareStatement(String)) &&
 (within(*..SchemaBootstrap)) &&
 args(param1);

 Object around(String param1) :
 sqlInjection_prepareStatementFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,
 param1, fixes.get(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }
 else{
 return proceed(result);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()
 + "," + watch.getElapsedTime());
 return proceed(param1);
 }

 pointcut sqlInjection_prepareStatementFunctionMultiParam(
 String param1, int param2, int param3) :
 call(* *.prepareStatement(String, int, int)) &&
 (within(*..SchemaBootstrap)) &&
 args(param1, param2, param3);

 Object around(String param1, int param2, int param3) :
 sqlInjection_prepareStatementFunctionMultiParam(param1,
 param2, param3){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,
 param1, fixes.get(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }

www.manaraa.com

108

 else{
 return proceed(result, param2, param3);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1, param2, param3);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine() + "," +
 watch.getElapsedTime());
 return proceed(param1, param2, param3);
 }

 pointcut sqlInjection_prepareStatementFunctionTwoParamIntArray(
 String param1, int param2) :
 call(* *.prepareStatement(String, int)) &&
 (within(*..SchemaBootstrap)) &&
 args(param1, param2);

 Object around(String param1, int param2) :
 sqlInjection_prepareStatementFunctionTwoParamIntArray(param1,
 param2){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,
 param1, fixes.get(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }
 else{
 return proceed(result, param2);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1, param2);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" +
 thisJoinPoint.getSourceLocation().getLine() + ","
 + watch.getElapsedTime());
 return proceed(param1, param2);
 }

 pointcut sqlInjection_prepareStatementFunctionTwoParam(String param1,

www.manaraa.com

109

 int[] param2) :
 call(* *.prepareStatement(String, int[])) &&
 (within(*..SchemaBootstrap)) &&
 args(param1, param2);

 Object around(String param1, int[] param2) :
 sqlInjection_prepareStatementFunctionTwoParam(param1, param2){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" +
 thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,
 param1, fixes.get(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }
 else{
 return proceed(result, param2);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1, param2);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine()
 + "," + watch.getElapsedTime());
 return proceed(param1);
 }

 pointcut sqlInjection_generalExecuteFunction(String param1) :
 call(* *.execute(String)) &&
 (within(*..SchemaBootstrap)) &&
 args(param1);

 Object around(String param1) :
sqlInjection_generalExecuteFunction(param1){
 watch.start();
 if(fixes.containsKey(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine())){
 try{
 String result = ThesisUtil.doSQLInjectionFix(logger,
 param1, fixes.get(thisJoinPoint.getSourceLocation().
 getFileName() + "_" +
 thisJoinPoint.getSourceLocation().getLine()));
 if(result.contains("VALIDATION_FAILURE")){
 logger.info(result);
 }
 else{
 return proceed(result);
 }

www.manaraa.com

110

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 else{
 return proceed(param1);
 }
 watch.stop();
 logger.info(thisJoinPoint.getSourceLocation().getFileName()
 + "_" + thisJoinPoint.getSourceLocation().getLine() + ","
 + watch.getElapsedTime());
 return proceed(param1);
 }
}

Appendix E XSS Validator Class

package com.thesis.aop.esapi;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.owasp.esapi.ESAPI;
import org.owasp.esapi.ValidationRule;
import org.owasp.esapi.Validator;
import org.owasp.esapi.codecs.MySQLCodec;
import org.owasp.esapi.codecs.OracleCodec;
import org.owasp.esapi.errors.EncodingException;
import org.owasp.esapi.errors.IntrusionException;
import org.owasp.esapi.errors.ValidationException;
import org.owasp.esapi.reference.DefaultSecurityConfiguration;

public abstract class XSSValidation {

 public static String REGEX_ALPHANUMERIC = "AlphaNumberic";
 public static String REGEX_ALPHA = "Alpha";
 public static String REGEX_NUMERIC = "Numeric";
 public static String REGEX_EMAIL = "Email";
 public static String REGEX_ZIP_CODE = "ZipCode";
 public static String REGEX_IP_ADDRESS = "IPAddress";
 public static String REGEX_SSN = "SSN";

 public XSSValidation(){}

 public static String escapeCustomString(String s,
 String regex, int maxLength){

 Pattern p = ESAPI.securityConfiguration().
 getValidationPattern(regex);

 if(p == null)
 p = Pattern.compile(regex);

 //Sending pattern directly.
 try {
 return ESAPI.validator().getValidInput(
 "CUSTOM_STRING_ESCAPE",

www.manaraa.com

111

 s, p, maxLength, false, false);
 } catch (Exception e) {
 e.printStackTrace();
 String resultString = "";
 Matcher m = p.matcher(s);
 while(m.find()){
 resultString += m.group(0);
 }
 return resultString;
 }
 }

 public static String escapeJavaScript(String s){
 return ESAPI.encoder().encodeForJavaScript(s);
 }

 public static String escapeCSS(String s){
 return ESAPI.encoder().encodeForCSS(s);
 }

 public static String escapeHTML(String s){
 return ESAPI.encoder().encodeForHTML(s);
 }

 public static String escapeHTMLAttribute(String s){
 return ESAPI.encoder().encodeForHTMLAttribute(s);
 }

 public static String escapeURL(String s) throws
 EncodingException{
 return ESAPI.encoder().encodeForURL(s);
 }

 public static String validateCreditCard(String s){
 try {
 s = ESAPI.validator().
 getValidCreditCard("CREDIT_CARD", s, false);
 } catch (ValidationException e) {
 s = "VALIDATION FAILED " + s;
 e.printStackTrace();
 } catch (Exception e) {
 s = "VALIDATION FAILED " + s;
 e.printStackTrace();
 }
 finally{
 return s;
 }

 }
}

Appendix F SQL Injection Validator Class

package com.thesis.aop.esapi;

import java.io.IOException;

www.manaraa.com

112

import java.io.InputStream;
import java.util.Iterator;
import java.util.List;
import java.util.Properties;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
import net.sf.jsqlparser.JSQLParserException;
import org.apache.log4j.Logger;
import org.owasp.esapi.ESAPI;
import org.owasp.esapi.codecs.MySQLCodec;
import org.owasp.esapi.codecs.OracleCodec;
import com.thesis.aop.main.Main;
import com.thesis.aop.sqlinjection.logic.SQLParser;
import com.thesis.aop.sqlinjection.parser.CONSTANT;
import com.thesis.aop.sqlinjection.parser.SimpleExpression;

public abstract class SQLInjectionValidation {

 private static Properties regexProperties;

 public static void loadRegexProperties() throws IOException{
 InputStream logStream = Main.class.
 getResourceAsStream("/properties/regex.properties");
 regexProperties = new Properties();
 regexProperties.load(logStream);
 }

 public static String escapeMySQL(String s, Logger logger)
 throws JSQLParserException {
 MySQLCodec mysql = new MySQLCodec(MySQLCodec.MYSQL_MODE);
 String encodedResult = s;
 try {
 loadRegexProperties();
 encodedResult = removeCommentsFromString(
 regexProperties.getProperty("ALL_COMMENTS"),
 encodedResult, logger);
 encodedResult = removeCommentsFromString(
 regexProperties.getProperty("START_COMMENTS"),
 encodedResult, logger);

 List<SimpleExpression> items =
 SQLParser.getQueryValues(encodedResult);

 for (Iterator iterator = items.iterator(); iterator.hasNext();) {
 SimpleExpression simpleExpression = (SimpleExpression) iterator
 .next();
 boolean tautology = testTautology(simpleExpression, logger);
 if (tautology) {
 logger.info("Obvious Tautology Detected with Left Side: "
 + simpleExpression.getColumnName()
 + " and Right Side: " + simpleExpression.value);
 logger.info("Replacing Obvious Tautology With '1=2' in " +
 "order to prevent execution of attack");
 String regex = "(.{0,1}" + simpleExpression.columnName
 + ".{0,1}\\s{0,1000}" + simpleExpression.op +

www.manaraa.com

113

 "\\s{0,1000}.{0,1}"
 + simpleExpression.value + ".{0,1})";
 encodedResult = encodedResult.replaceAll(regex, " 1=2");
 } else if (simpleExpression.valueType == CONSTANT.VALUE_STRING) {
 encodedResult = encodedResult.replace(
 "\"" + simpleExpression.value + "\"",
 "\""
 + ESAPI.encoder().encodeForSQL(mysql,
 simpleExpression.value) + "\"");
 encodedResult = encodedResult.replace(
 "'" + simpleExpression.value + "'",
 "'"
 + ESAPI.encoder().encodeForSQL(mysql,
 simpleExpression.value) + "'");
 }
 }
 } catch (JSQLParserException e) {
 logger.info("ERROR - INVALID QUERY: " + e.getCause());
 encodedResult = "PARSE_ERROR -" + encodedResult;
 } catch (IOException e) {
 logger.info("ERROR - IO Exception: " + e.getCause());
 }

 return encodedResult;

 }

 public static String escapeOracle(String s, Logger logger)
 throws JSQLParserException {
 OracleCodec oracle = new OracleCodec();
 String encodedResult = s;

 try {
 loadRegexProperties();
 encodedResult = removeCommentsFromString(
 regexProperties.getProperty("ALL_COMMENTS"),
 encodedResult, logger);
 encodedResult = removeCommentsFromString(
 regexProperties.getProperty("START_COMMENTS"),
 encodedResult, logger);

 List<SimpleExpression> items =
 SQLParser.getQueryValues(encodedResult);
 for (Iterator iterator = items.iterator(); iterator.hasNext();) {
 SimpleExpression simpleExpression = (SimpleExpression) iterator
 .next();
 boolean tautology = testTautology(simpleExpression, logger);
 if (tautology) {
 logger.info("Obvious Tautology Detected with Left Side: "
 + simpleExpression.getColumnName()
 + " and Right Side: " + simpleExpression.value);
 logger.info("Replacing Obvious Tautology With '1=2' in " +
 "order to prevent execution of attack");
 String regex = "(.{0,1}" + simpleExpression.columnName
 + ".{0,1}\\s{0,1000}" + simpleExpression.op +
 "\\s{0,1000}.{0,1}"
 + simpleExpression.value + ".{0,1})";

www.manaraa.com

114

 encodedResult = encodedResult.replaceAll(regex, " 1=2");
 } else if (simpleExpression.valueType == CONSTANT.VALUE_STRING) {
 encodedResult = encodedResult.replace(
 "\"" + simpleExpression.value + "\"",
 "\""
 + ESAPI.encoder().encodeForSQL(oracle,
 simpleExpression.value) + "\"");
 encodedResult = encodedResult.replace(
 "'" + simpleExpression.value + "'",
 "'" + ESAPI.encoder().encodeForSQL(oracle,
 simpleExpression.value) + "'");
 }
 }
 } catch (JSQLParserException e) {
 logger.info("ERROR - INVALID QUERY: " + e.getCause());
 encodedResult = "PARSE_ERROR -" + encodedResult;
 } catch (IOException e) {
 logger.info("ERROR - IO Exception :" + e.getCause());
 }

 return encodedResult;
 }

 public static boolean testTautology(SimpleExpression exp,
 Logger logger) {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("js");
 boolean resultBool = false;

 try {
 Object result;

 if (exp.getOp().equals("=")) {
 result = engine.eval("'" + exp.getColumnName() + "'" + "=="
 + "'" + exp.getValue() + "'");
 } else if (exp.getOp().equals("<>")) {
 result = engine.eval("'" + exp.getColumnName() + "'" + "!="
 + "'" + exp.getValue() + "'");
 } else {
 result = engine.eval(exp.getColumnName() + exp.getOp()
 + exp.getValue());
 }

 result = (Boolean) result;

 Boolean boolResult = new Boolean(result.toString());

 System.out.println(result);
 resultBool = boolResult.booleanValue();

 } catch (ScriptException e) {
 logger.info("ERROR in Tautology Detection", e);
 } finally {
 return resultBool;
 }

 }

www.manaraa.com

115

 public static String removeCommentsFromString(String regex,
 String input, Logger logger){
 Pattern regexp = Pattern.compile(regex,
 Pattern.DOTALL | Pattern.MULTILINE);
 Matcher regexMatcher = regexp.matcher(input);
 while (regexMatcher.find()) {
 logger.info("Removing comment from query: \"" +
 regexMatcher.group() + "\" from \"" + input + "\"");
 input = input.replace(regexMatcher.group(), " ");
 }
 return input;
 }

}

www.manaraa.com

116

References

1. “Cyber Security Statistics.” Entrepreneur Media Inc., n.p. Web. 13 Mar. 2006.

2. “Measuring Website Security: Windows of Exposure.” WhiteHat Website Security

Statistic Report.,14 Mar. 2011.

3. Webroot. State of Internet Security – Protecting Enterprise Systems [Whitepaper]

USA: Webroot Software Inc., 2007.

4. Electronista. “LulzSec hacks Sony Pictures, reveals 1m passwords unguarded.”

Electronista Media Inc., 2 Jun. 2011.

5. Sethi, Rohit. “Aspect-Oriented Programming and Security”. SecurityFocus.com. 2

Nov. 2010.

6. Bostrom, G. Database Encryption as an Aspect. Proceedings of AOSD 2004

Workshop on AOSD Technology for Application level Security., Mar. 2004.

7. Laney, R., van der Linden, J., Thomas, P. Evolution of Aspects for Legacy System

Security Concerns. Proceedings of AOSD 2004 Workshop on AOSD Technology for

Application level Security., Mar. 2004

8. Huang, M., Wang, C., Zhang, L. Toward a Reusable and Generic Security Aspect

Library. Proceedings of AOSD 2004 Workshop on AOSD Technology for Application

level Security., Mar. 2004.

9. Hermosillo, G., Gomez, R., Seinturier, L., Duchien, L. Using Aspect Programming to

Secure Web Applications. Journal of Software, Vol. 2, No. 6., Dec 2007.

10. V. Shanmughaneethi, Ra. Yagna Pravin, C. Emilin Shyni, S. Swamynathan: SQLIVD

- AOP: Preventing SQL Injection Vulnerabilities Using Aspect Oriented Programming

through Web Services. HPAGC 2011: 327-337.

11. Clarke, Justin. SQL Injection Attacks and Defense. 1st ed. Syngress, 13 May 2009. 1

Mar. 2011.

12. Luong, Varian, "Intrusion Detection And Prevention System: SQL-Injection Attacks".

Master's Projects. Paper 16. http://scholarworks.sjsu.edu., 12 Jan. 2010.

13. W. R. Cook, S. Rai, Safe Query Objects: Statically Typed Objects as Remotely

Executable Queries, ICSE 2005

14. R. McClure, I. Kruger, SQL DOM: Compile Time Checking of Dynamic SQL

Statements, ICSE 2005

www.manaraa.com

117

15. V. B. Livshits, M. S. Lam, Finding Security Vulnerabilities in Java Applications with

Static Analysis, USENIX Security Symp., 2005

16. G. Wassermann, Z. Su, An Analysis Framework for Security in Web Applications,

pp. 70-78, SAVCBS 2004

17. Y. Huang et. al., Securing Web Application Code by Static Analysis & Runtime

Protection, WWW2004

18. G. T. Buehrer, B. W. Weide, P. A. G. Sivilotti, Using Parse Tree Validation to

Prevent SQL Injection Attacks, SEM 2005

19. W. G. Halfond, A. Orso, Combining Static Analysis & Runtime Monitoring to Counter

SQL-Injection Attacks, WODA 2005

20. W. G. Halfond, A. Orso, AMNESIA: Analysis and Monitoring for NEutralizing SQL

Injection Attacks, ASE 2005

21. OWASP (Open Source Web Application Security Project) . OWASP Top 10 – 2010

Edition. OWASP Foundation, 2010.

22. Klein, Amit. “DOM Based Cross Site Scripting or XSS of the Third Kind”. Web

Application Security Consortium., 4 Jul. 2005.

23. Mece, Elinda. Kodra, Lorena. Towards full protection of Web Applications based on

Aspect Oriented Programming, pp. 33-37, GJCST 2012.

24. Arthur, Charles. “Twitter users including Sarah Brown hit by malicious hacker

attack.” Guardian News. 21 Sep. 2010.

25. Constantin, Lucian. “XSS Flaw Found on Secure American Express Site.” SoftPedia

News. 5 Oct. 2010.

26. SpiderLabs. The Web Hacking Incident Database Semiannual Report. TrustWave

Holdings Inc., 2011

27. D. Alhadidi, N. Belblidia, and M. Debbabi. AspectJ Assessment from a Security

Perspective. In the Proceedings of the Workshop on Practice and Theory of IT

Security, PTITS'2006, May 17-19, 2006.

28. Win, Bart ., Viren Shah, Wouter Joosen, and Ron Bodkin, editors. AOSDSEC:

AOSD Technology for Application-Level Security, March 2004.

www.manaraa.com

118

29. Bodkin, Ron. "Enterprise Security Aspects." AOSDSEC: AOSD Technology for

Application-Level Security. Ed. Bart . Win, Viren Shah, Wouter Joosen, and Ron

Bodkin, March 2004.

30. Fortify. Leading Bank Turns Security into a Differentiator with Fortify SCA. Fortify

Software Inc. 2008.

31. SIIA. 2011 CODiE Awards Winners List. Software & Information Industry

Association., 2011.

32. Laddad, Ramnivas. “AOP @ Work: AOP Myths & Realities.” IBM Developer Works,

14 Feb. 2006.

33. Kersten, Mik. “AOP @ Work: AOP Tools Comparison Part 2.” IBM Developer Works,

8 Feb. 2005.

34. Miles, Russ. AspectJ Cookbook. 1st ed. O'Reilly Media, 2004. Print.

35. Almaer, Dion. “AspectJ and AspectWerkz Merge Forces.” The Server Side. 19 Jan

2005.

36. Alfresco Community. Alfresco Content Management. Alfresco Software Inc. 31 Jan.

2012. Web.

37. JadaSite. JadaSite E-Commerce System. JadaSite.com, 2011. Web.

38. Partho. “10 Best Open Source ERP Software.” Gaea News Network, 27 Oct. 2009.

39. Doyle, Maureen. Walden, James. An Empirical Study of the Evolution of PHP Web

Application Security, pp. 11-20, METRISEC 21 Sept. 2011.

40. Chess, Brian, and Jacob West. Secure Programming With Static Analysis. 1st ed.

Addison-Wesley Professional, 2007. Print.

41. Manico, Jim. OWASP – Enterprise Security API. OWASP Foundation, 31 Mar. 2010.

42. Alfresco Community. Alfresco Customer Overview. Alfresco Software Inc, 2012.

Web.

43. “Fortify Source Code Analyzer – Capabilities.” HP Fortify. Web. 2011.

44. DUPLICATE OF 21

45. Houston, Pete. Android XML Adventure – Parsing XML Data with SAXParser. Web.

9 Oct. 2011.

46. AspectJ Programming Guide – Pointcut Language Semantics. Eclipse Foundation.

Web. 2012.

www.manaraa.com

119

47. AspectJ Programming Guide – Advice Language Semantics. Eclipse Foundation.

Web. 2012.

48. AspectJ Programming Guide – Chapter 2 Join Points. Eclipse Foundation. Web.

2012.

49. Brereton, JoAnn. Use JavaCC to build a user friendly Boolean query language. IBM

Developer Works. Web. 15 Jan. 2004.

50. Tamada, Srinivas. Hack your Own Web Project: SQL Injection. 9Lessons.info. Web.

15 Dec. 2008.

51. Wiegenstein, Andreas. The Imact of Cross Site Scripting on Your Business. Virtual

Forge. 27 Jul. 2007.

52. ESAPI Interface Encoder. The Open Web Application Security Project. Web. 2011.

53. ESAPI Validator Library. The Open Web Application Security Project. Web. 2011.

54. Li, Sing. AOP: Patching in the 21st Century. Developer Fusion. Web. 23 Jul. 2010.

55. RSnake. XSS (Cross Site Scripting) Cheat Sheet Esp: for filter evasion. Ha.ckers.

Web. 2011.

		2012-06-19T13:19:00-0400
	Preflight Ticket Signature

